Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Scientists Uncover Potential Trigger of Diabetic Kidney Disease

22.02.2005


Scientists at Jefferson Medical College and Mount Sinai School of Medicine have identified a protein that plays a leading part in triggering kidney disease in diabetic patients, a condition known as diabetic nephropathy and the leading cause of kidney failure worldwide. The finding, which they report February 22 in the journal PLoS Medicine, could lead to the eventual development of compounds that might be used to treat diabetic kidney disease.



According to study co-author Kumar Sharma, M.D., director of the Center for Diabetic Kidney Disease at Thomas Jefferson University in Philadelphia and professor of medicine at Jefferson Medical College of Thomas Jefferson University, more than 40 percent of patients with end-stage chronic kidney disease also have diabetic nephropathy. While diabetic nephropathy affects approximately one in three people with type 1 and type 2 diabetes, how diabetes damages the kidneys is poorly understood.

Dr. Sharma, along with Erwin Böttinger, M.D., professor of medicine and pharmacology and biological chemistry at Mount Sinai School of Medicine in New York, and their co-workers looked at kidney samples from mice and people with and without diabetes and looked at the effects of high glucose on the kidney cells.


The researchers found that a protein called CD36 was present in a specific cell type called the proximal tubular epithelial cell in human diabetic kidney disease. In humans, the cells seem to be involved in a self-directed cell death or apoptosis in diabetic kidney disease. “We think CD36 might be a switch that is turned on in the human condition, and might be one of the reasons these cells die in human disease and start a cascade of progressive kidney failure,” Dr. Sharma explains. “If we can develop compounds to block CD36, it could potentially be a clinical intervention.

“Our thinking is completely novel – that CD36 is a key player in causing progressive diabetic kidney disease,” he says. “We think as the diabetic kidney gets damaged, more and more of these proteins and free fatty acids go through the urine and hit these tubular cells. The tubular cells, via CD36, take them up and start the apoptosis pathway and ultimately cause fibrosis and progressive kidney failure as a result. We found almost all of the apoptotic cells had CD36 in them. If we block CD36 in cell culture, these proteins and free fatty acids don’t cause apoptosis.”

Next, the researchers would like to develop a mouse model that overexpresses CD36. “By increasing CD36 levels, we’d like to find out if this does cause the apoptotic pathway with co-existing diabetes,” Dr. Sharma says. He notes that there is some evidence showing that CD36 might be involved in vascular damage in diabetes and lead to atherosclerosis. It might play an important role not only in the kidney but in the vasculature and in the development of atherosclerosis.

Dr. Sharma currently is conducting a study to evaluate how a new medicine may reduce scar tissue in damaged kidneys. “The goal of this study – the only one of its kind in the United States – is to evaluate the extent to which a new compound, called pirfenidone, can prevent the kidney scarring that often results from diabetes,” he says.

Kidney scarring results from the excessive activity of a molecule called transforming growth factor-beta (TGF-beta). In previous studies, Dr. Sharma’s research group found the TGF-beta stimulates overproduction of the scar tissue in the kidneys of diabetic patients and prevents normal kidney function. The new drug, pirfenidone, was shown to block the damaging effects of TGF-beta. “This trial will help us is to see if an antifibrotic approach will add to the armamentarium of arresting diabetic nephropathy.”

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>