Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Scientists Uncover Potential Trigger of Diabetic Kidney Disease

22.02.2005


Scientists at Jefferson Medical College and Mount Sinai School of Medicine have identified a protein that plays a leading part in triggering kidney disease in diabetic patients, a condition known as diabetic nephropathy and the leading cause of kidney failure worldwide. The finding, which they report February 22 in the journal PLoS Medicine, could lead to the eventual development of compounds that might be used to treat diabetic kidney disease.



According to study co-author Kumar Sharma, M.D., director of the Center for Diabetic Kidney Disease at Thomas Jefferson University in Philadelphia and professor of medicine at Jefferson Medical College of Thomas Jefferson University, more than 40 percent of patients with end-stage chronic kidney disease also have diabetic nephropathy. While diabetic nephropathy affects approximately one in three people with type 1 and type 2 diabetes, how diabetes damages the kidneys is poorly understood.

Dr. Sharma, along with Erwin Böttinger, M.D., professor of medicine and pharmacology and biological chemistry at Mount Sinai School of Medicine in New York, and their co-workers looked at kidney samples from mice and people with and without diabetes and looked at the effects of high glucose on the kidney cells.


The researchers found that a protein called CD36 was present in a specific cell type called the proximal tubular epithelial cell in human diabetic kidney disease. In humans, the cells seem to be involved in a self-directed cell death or apoptosis in diabetic kidney disease. “We think CD36 might be a switch that is turned on in the human condition, and might be one of the reasons these cells die in human disease and start a cascade of progressive kidney failure,” Dr. Sharma explains. “If we can develop compounds to block CD36, it could potentially be a clinical intervention.

“Our thinking is completely novel – that CD36 is a key player in causing progressive diabetic kidney disease,” he says. “We think as the diabetic kidney gets damaged, more and more of these proteins and free fatty acids go through the urine and hit these tubular cells. The tubular cells, via CD36, take them up and start the apoptosis pathway and ultimately cause fibrosis and progressive kidney failure as a result. We found almost all of the apoptotic cells had CD36 in them. If we block CD36 in cell culture, these proteins and free fatty acids don’t cause apoptosis.”

Next, the researchers would like to develop a mouse model that overexpresses CD36. “By increasing CD36 levels, we’d like to find out if this does cause the apoptotic pathway with co-existing diabetes,” Dr. Sharma says. He notes that there is some evidence showing that CD36 might be involved in vascular damage in diabetes and lead to atherosclerosis. It might play an important role not only in the kidney but in the vasculature and in the development of atherosclerosis.

Dr. Sharma currently is conducting a study to evaluate how a new medicine may reduce scar tissue in damaged kidneys. “The goal of this study – the only one of its kind in the United States – is to evaluate the extent to which a new compound, called pirfenidone, can prevent the kidney scarring that often results from diabetes,” he says.

Kidney scarring results from the excessive activity of a molecule called transforming growth factor-beta (TGF-beta). In previous studies, Dr. Sharma’s research group found the TGF-beta stimulates overproduction of the scar tissue in the kidneys of diabetic patients and prevents normal kidney function. The new drug, pirfenidone, was shown to block the damaging effects of TGF-beta. “This trial will help us is to see if an antifibrotic approach will add to the armamentarium of arresting diabetic nephropathy.”

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>