Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Scientists Uncover Potential Trigger of Diabetic Kidney Disease

22.02.2005


Scientists at Jefferson Medical College and Mount Sinai School of Medicine have identified a protein that plays a leading part in triggering kidney disease in diabetic patients, a condition known as diabetic nephropathy and the leading cause of kidney failure worldwide. The finding, which they report February 22 in the journal PLoS Medicine, could lead to the eventual development of compounds that might be used to treat diabetic kidney disease.



According to study co-author Kumar Sharma, M.D., director of the Center for Diabetic Kidney Disease at Thomas Jefferson University in Philadelphia and professor of medicine at Jefferson Medical College of Thomas Jefferson University, more than 40 percent of patients with end-stage chronic kidney disease also have diabetic nephropathy. While diabetic nephropathy affects approximately one in three people with type 1 and type 2 diabetes, how diabetes damages the kidneys is poorly understood.

Dr. Sharma, along with Erwin Böttinger, M.D., professor of medicine and pharmacology and biological chemistry at Mount Sinai School of Medicine in New York, and their co-workers looked at kidney samples from mice and people with and without diabetes and looked at the effects of high glucose on the kidney cells.


The researchers found that a protein called CD36 was present in a specific cell type called the proximal tubular epithelial cell in human diabetic kidney disease. In humans, the cells seem to be involved in a self-directed cell death or apoptosis in diabetic kidney disease. “We think CD36 might be a switch that is turned on in the human condition, and might be one of the reasons these cells die in human disease and start a cascade of progressive kidney failure,” Dr. Sharma explains. “If we can develop compounds to block CD36, it could potentially be a clinical intervention.

“Our thinking is completely novel – that CD36 is a key player in causing progressive diabetic kidney disease,” he says. “We think as the diabetic kidney gets damaged, more and more of these proteins and free fatty acids go through the urine and hit these tubular cells. The tubular cells, via CD36, take them up and start the apoptosis pathway and ultimately cause fibrosis and progressive kidney failure as a result. We found almost all of the apoptotic cells had CD36 in them. If we block CD36 in cell culture, these proteins and free fatty acids don’t cause apoptosis.”

Next, the researchers would like to develop a mouse model that overexpresses CD36. “By increasing CD36 levels, we’d like to find out if this does cause the apoptotic pathway with co-existing diabetes,” Dr. Sharma says. He notes that there is some evidence showing that CD36 might be involved in vascular damage in diabetes and lead to atherosclerosis. It might play an important role not only in the kidney but in the vasculature and in the development of atherosclerosis.

Dr. Sharma currently is conducting a study to evaluate how a new medicine may reduce scar tissue in damaged kidneys. “The goal of this study – the only one of its kind in the United States – is to evaluate the extent to which a new compound, called pirfenidone, can prevent the kidney scarring that often results from diabetes,” he says.

Kidney scarring results from the excessive activity of a molecule called transforming growth factor-beta (TGF-beta). In previous studies, Dr. Sharma’s research group found the TGF-beta stimulates overproduction of the scar tissue in the kidneys of diabetic patients and prevents normal kidney function. The new drug, pirfenidone, was shown to block the damaging effects of TGF-beta. “This trial will help us is to see if an antifibrotic approach will add to the armamentarium of arresting diabetic nephropathy.”

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>