Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Signaling protein builds bigger, better bones in mice

22.02.2005


Also protects against bone loss from aging or lack of estrogen



Leaping tall buildings in a single bound may be out of the question, but the genetically engineered "supermice" in Ormond MacDougald’s laboratory at the University of Michigan Medical School are definitely stronger than average. With bone mass up to four times greater than ordinary mice, these research animals could hold the secret to new drugs for preventing or treating osteoporosis and other human diseases.

The secret appears to be a secreted signaling protein called Wnt10b. Known to inhibit the development of adipose tissue in mice, Wnt10b also stimulates the growth of bone cells, according to a new study that will be published February 21 in the Online Early Edition of the Proceedings of the National Academy of Sciences. "High levels of Wnt10b expression in bone marrow directly increased bone mass and density in our experimental mice," says Ormond A. MacDougald, Ph.D., associate professor of molecular and integrative physiology in the U-M Medical School. "This is the first identification of a specific signaling protein in the Wnt family that regulates bone formation."


Wnt10b is one of a family of 19 related proteins. Wnts (pronounced "wints") regulate the complex changes that take place as an embryo develops. One step in this process determines the fate of primitive cells called mesenchymal stem cells. "In bone marrow, mesenchymal stem cells have the potential to become either fat cells called adipocytes or bone-forming cells called osteoblasts," MacDougald says. "In adult animals, including humans, there’s a reciprocal relationship between bone and marrow fat. Our research indicates that Wnt10b’s signal blocks the fat cell pathway and stimulates the osteoblast pathway, which means less fat and more bone."

To study the effect of Wnt10b gene expression on tissue development, MacDougald’s research team created an artificial sequence of DNA called a transgene linking Wnt10b to the FABP4 promoter, which is expressed in fatty tissue and in bone marrow. U-M scientists injected the transgene DNA into fertilized mouse eggs, and then bred mice that inherited the new gene to create the transgenic animals used in their research.

Kurt D. Hankenson, D.V.M., Ph.D., a U-M assistant professor of orthopedic surgery and laboratory animal medicine, and Christina N. Bennett, a U-M graduate student and first author of the PNAS paper, used a technology called micro-computerized tomography to scan femur (leg) bones from mice that inherited the FABP4-Wnt10b gene combination and compare them to scans from normal mice.

Bennett and Hankenson discovered that femurs from the transgenic mice had almost four times as much bone, and were mechanically stronger than femurs from control mice. (Note to editors: An image showing the femur scan comparison is available.) "It was a very exciting moment the first time we saw scans showing increased bone mass in transgenic mice," Bennett says. "Visually, we don’t see any abnormal side-effects in bone from the transgenic mice. Its development and morphology appear to be completely normal." Loss of bone often develops with aging, but Wnt10b transgenic mice maintained their high levels of bone mass up to the ripe old age of 23 months, when the study was concluded.

Estrogen deficiency in females is another common cause of bone loss. When U-M scientists removed ovaries from normal mice in the study, they developed reduced bone mineral density and bone volume. But the Wnt10b females showed no bone loss after their ovaries were removed. "Because the transgenic mice have more trabecular bone, or bone within the marrow cavity, to begin with, they are doubly protected from the usual loss of bone density due to estrogen deficiency," MacDougald adds.

To confirm that Wnt10b was the key to increased bone formation, Bennett and Hankenson scanned bones from a strain of laboratory mice that didn’t have a gene for Wnt10b. Lacking the ability to produce Wnt10b protein in bone marrow cells, these mice had 30 percent lower bone volume and bone mineral density than normal mice.

Using PCR analysis of Wnt10b-expressing cells in bone marrow, MacDougald found high levels of collagen and alkaline phosphatase, and expression of transcription factors that turn on genes involved in bone formation.

Bennett discovered another important clue when she found that Wnt10b expression shuts down activity of a gene called PPAR-gamma, which is required for the development of adipocytes or fat cells. "It suggests that Wnt10b’s role may be to block PPAR-gamma, shifting development from the adipocyte pathway to the osteoblast pathway," she says.

In future research, MacDougald hopes to unravel the molecular mechanism for Wnt10b’s bone-building effect. "It’s not only an important scientific question, it’s important to the understanding and potential treatment of osteoporosis and other human diseases," he says. "Right now, there is a need for drugs on the market to stimulate new bone formation. Being able to activate Wnt signaling in bone marrow and osteoblasts might help prevent the loss of bone associated with aging or menopause."

The research was funded by the National Institutes of Health, the U-M Diabetes Research and Training Center, the U-M Core Center for Musculoskeletal Disorders, and the Nathan Shock Mutant and Transgenic Rodent Core. Fellowships to Christina Bennett were from the Tissue Engineering and Regeneration Training Grant and the American Physiological Society Porter Fellowship. Kenneth Longo was supported by a mentor-based postdoctoral fellowship from the American Diabetes Association.

The experimental mice used in the study were produced in the U-M’s Transgenic Animal Model Core facility. The University of Michigan has filed for patent protection on the Wnt10b transgenic mouse.

Additional collaborators on the study include Kenneth A. Longo, Ph.D., a former research fellow in MacDougald’s lab who is now a postdoctoral fellow in the U-M School of Dentistry; Wendy S. Wright, research associate; Larry J. Suva, Ph.D., Center for Orthopaedic Research, University of Arkansas for Medical Sciences; and Timothy F. Lane, Ph.D., Jonsson Comprehensive Cancer Center, University of California, Los Angeles, who developed the Wnt10b knock-out mouse.

MacDougald and his research team published a paper in the August 2004 issue of the Journal of Biological Chemistry, which showed that Wnt10b over-expression in adipocytes produced mice with 50 percent less body fat and fewer fat cells.

Sally Pobojewski | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>