Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Individual differences in taste perception directly related to genetic variation in taste receptors

22.02.2005


Differing forms of taste genes mean that we all live in our own unique taste world



Why do brussels sprouts taste bitterly repellent to one person and bland - or even delicious - to the next? A study published in the February 22 issue of Current Biology confirms the influential role of genetics in determining the wide range of human sensitivity to taste, ultimately impacting how we each perceive the world in a slightly different way.

"Each human carries their own distinctive set of taste receptors which gives them a unique perception of how foods and medicines taste," explains Monell Chemical Senses Center psychophysicist Paul Breslin, PhD, who shares first authorship and is a corresponding contributor for the study. "This paper shows that a single gene codes for multiple forms of a taste receptor, with each form having a differing sensitivity to taste compounds. Further, a person’s perceptual sensitivity to these bitter tasting compounds corresponds strikingly well with their genetically-determined receptor sensitivity."


In the paper, researchers at the Monell Center and collaborating institutions related individual perception of the bitter-tasting compounds PTC and PROP to variation in a bitter taste receptor gene known as hTAS2R38.

The researchers cloned two forms (haplotypes) of the hTAS2R38 gene and expressed the corresponding receptors in a cell culture. The two haplotypes, known as PAV and AVI, vary with respect to amino acid substitutions encoded at certain positions on the taste receptor protein.

In the cell culture experiments, small amounts of the bitter compounds activated cells expressing the PAV form of the receptor, whereas cells expressing the AVI form were unresponsive to the same compounds. Cells expressing other haplotypes (eg PVI, AAI or AAV) had intermediate sensitivity to the bitter compounds.

Other experiments examined bitterness perception in human subjects. People with the PAV form of the hTAS2R38 gene were most sensitive to the bitter taste of PROP and PTC. Subjects homozygous for the AVI haplotype were 100 to 1000 times less sensitive to bitter taste of the two compounds, confirming the lack of response in the cell culture experiment. These data implicate the responsive PAV haplotype as a major determinant of sensitivity to the bitter taste of PROP and PTC in humans.

"These data answer a long-standing question about why humans differ in their ability to taste some bitter compounds," explains study co-author Danielle Reed, PhD, a Monell geneticist. "Now we can expand our use of this procedure to understand why people are sensitive to other types or tastes, such as sweet or umami, or other types of bitter compounds. We would then be able to test people for their innate ability or inability to taste a variety of flavors and foods." Such knowledge may someday be used to help patients consume beneficial bitter-tasting compounds, such as pharmaceuticals and health-promoting bitter-tasting plants.

The studies demonstrate that variations in a single bitter receptor gene can code for different taste receptors, each sensitive to distinct bitter taste compounds. Thus, while each human may have 25 or so bitter receptor taste genes, because each gene can code for multiple receptors with differing sensitivities, there may be hundreds of different bitter taste receptors in the human population as a whole, leading to wide individual variation in perception of bitterness.

The existence of both bitter "tasters" and "non-tasters" has the scientists curious for more answers. Breslin comments, "From a human evolutionary perspective, we want to understand how and why both tasters and non-tasters evolved and were maintained in the gene pool." Reed continues, "Usually when we see a trait like this, there is a biological advantage to maintaining the variation. We’re wondering what that could be."

Sharing first authorship of the paper with Breslin is Bernd Bufe from the German Institute of Human Nutrition (DIFE). Also contributing to the studies were Wolfgang Meyerhof and Christina Kuhn at the German Institute of Human Nutrition; Un-Kyung Kim and Dennis Drayna from the National Institute on Deafness and Other Communication Disorders at the National Institutes of Health; Jay P. Slack from the Givuadan Flavors Corporation; and Christopher D. Tharp of Monell.

Paul Breslin | EurekAlert!
Further information:
http://www.monell.org

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>