Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Georgia Tech research indicates immune complications associated with combination medical devices

21.02.2005


Findings could help with design of combination products that are not compromised by adverse host responses

Medical devices are traditionally thought of as fairly simple implants such as stents and hip replacements - pieces of plastic or metal that are placed in the body to handle a very specific function. But biomedical devices now on the drawing board are considerably more sophisticated and represent an unprecedented melding of man and machine.

Combination products, devices that include a combination of drug, biological and device components, are expected to be the next big thing in biomedical devices. An example of a combination product is a tissue-engineered device that combines living cells with a polymer scaffold. When implanted into a patient, the device can replace or restore damaged tissue or organ function. While the response of the body to each component is well known, considerably less is known about how their new union may affect the body’s reaction to a combination device.



According to new research from the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, the body can have a different and potentially detrimental reaction when there’s more than one component involved. Findings from the study headed by Dr. Julia Babensee, an assistant professor in the Department of Biomedical Engineering, will be presented Feb. 20 at the annual meeting of the American Association for the Advancement of Science (AAAS).

When a biomedical implant is introduced into a patient’s body, the body’s response is a threat to the acceptance of the implant and could result in device failure. The body responds to biomaterials with an inflammatory reaction and to foreign biological components with an immune reaction. But the two reactions may affect one another when triggered simultaneously, as they would be in a combination device if the combination product contains any foreign biological material.

"If you’re combining a polymer with a biological component, the body may respond differently to that combination than it would to either component by itself. The immune response towards a foreign biological component of the device may be affected by the inflammatory response to the biomaterial component," Babensee said.

According to Babensee, there is a need to better understand more complex combination products so that as they move into wider use, they can be designed to integrate as smoothly as possible into the patient.

Babensee’s work focuses on strategies for designing biomaterials and devices that can best integrate into the body by controlling host responses. In some combination products, biomaterials (in the form of polymer sponges) are used in the medical device to provide sites for transplanted cells to grow on to help it be better incorporated, strengthening its connection to the body.

Initial in-vivo research findings indicate that the inflammatory response to a biomaterial can affect the immune response to a foreign protein that is delivered at the same time. The presence of the biomaterial (a polymer) enhanced the body’s immune response to a foreign protein. The polymer boosts the immune response by spurring the dendritic cells (cells that direct immune responses) to mature so that they can effectively initiate an immune response.

The finding means that for combination devices, if there was a potential immune response to a biological component, the biomaterial component could further exacerbate the immune response, making it more difficult for the device to integrate smoothly.

To better understand the body’s reaction to biomedical devices that incorporate both biomaterials and biological components, Babensee works with human blood cells, treating them with a variety of biomaterials to see what response is induced from the dendritic cells. "These cells control which way the immune response will go, so if we can control their phenotype, the idea is that we can control immune responses," Babensee said.

But there are ways around triggering a response. Babensee’s research has determined that immature dendritic cells don’t cause an immune response, making them a good option for biomaterials used in combination biomedical devices. "Eventually, this may be a way to integrate the control of immune responses towards a biomedical device through a biomaterial," Babensee said.

Different materials seem to have varying effects on the dendritic cells. This may indicate which biomaterials will be good for which application. For example, biomaterials that support dendritic cell maturation may be best suited as polymeric carriers for vaccine delivery and those that do not support dendritic cell maturation may be used as sponges in tissue engineering.

"It seems that there may be a way to control the immune response to a biological component through the use of different biomaterials," Babensee said.

Megan McRainey | EurekAlert!
Further information:
http://www.icpa.gatech.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>