Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Georgia Tech research indicates immune complications associated with combination medical devices

21.02.2005


Findings could help with design of combination products that are not compromised by adverse host responses

Medical devices are traditionally thought of as fairly simple implants such as stents and hip replacements - pieces of plastic or metal that are placed in the body to handle a very specific function. But biomedical devices now on the drawing board are considerably more sophisticated and represent an unprecedented melding of man and machine.

Combination products, devices that include a combination of drug, biological and device components, are expected to be the next big thing in biomedical devices. An example of a combination product is a tissue-engineered device that combines living cells with a polymer scaffold. When implanted into a patient, the device can replace or restore damaged tissue or organ function. While the response of the body to each component is well known, considerably less is known about how their new union may affect the body’s reaction to a combination device.



According to new research from the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, the body can have a different and potentially detrimental reaction when there’s more than one component involved. Findings from the study headed by Dr. Julia Babensee, an assistant professor in the Department of Biomedical Engineering, will be presented Feb. 20 at the annual meeting of the American Association for the Advancement of Science (AAAS).

When a biomedical implant is introduced into a patient’s body, the body’s response is a threat to the acceptance of the implant and could result in device failure. The body responds to biomaterials with an inflammatory reaction and to foreign biological components with an immune reaction. But the two reactions may affect one another when triggered simultaneously, as they would be in a combination device if the combination product contains any foreign biological material.

"If you’re combining a polymer with a biological component, the body may respond differently to that combination than it would to either component by itself. The immune response towards a foreign biological component of the device may be affected by the inflammatory response to the biomaterial component," Babensee said.

According to Babensee, there is a need to better understand more complex combination products so that as they move into wider use, they can be designed to integrate as smoothly as possible into the patient.

Babensee’s work focuses on strategies for designing biomaterials and devices that can best integrate into the body by controlling host responses. In some combination products, biomaterials (in the form of polymer sponges) are used in the medical device to provide sites for transplanted cells to grow on to help it be better incorporated, strengthening its connection to the body.

Initial in-vivo research findings indicate that the inflammatory response to a biomaterial can affect the immune response to a foreign protein that is delivered at the same time. The presence of the biomaterial (a polymer) enhanced the body’s immune response to a foreign protein. The polymer boosts the immune response by spurring the dendritic cells (cells that direct immune responses) to mature so that they can effectively initiate an immune response.

The finding means that for combination devices, if there was a potential immune response to a biological component, the biomaterial component could further exacerbate the immune response, making it more difficult for the device to integrate smoothly.

To better understand the body’s reaction to biomedical devices that incorporate both biomaterials and biological components, Babensee works with human blood cells, treating them with a variety of biomaterials to see what response is induced from the dendritic cells. "These cells control which way the immune response will go, so if we can control their phenotype, the idea is that we can control immune responses," Babensee said.

But there are ways around triggering a response. Babensee’s research has determined that immature dendritic cells don’t cause an immune response, making them a good option for biomaterials used in combination biomedical devices. "Eventually, this may be a way to integrate the control of immune responses towards a biomedical device through a biomaterial," Babensee said.

Different materials seem to have varying effects on the dendritic cells. This may indicate which biomaterials will be good for which application. For example, biomaterials that support dendritic cell maturation may be best suited as polymeric carriers for vaccine delivery and those that do not support dendritic cell maturation may be used as sponges in tissue engineering.

"It seems that there may be a way to control the immune response to a biological component through the use of different biomaterials," Babensee said.

Megan McRainey | EurekAlert!
Further information:
http://www.icpa.gatech.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>