Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Foiling fugitive fish

21.02.2005


A leading Canadian fish farming scientist is stirring the scientific waters by arguing that it may be safer to risk introducing exotic salmon into a marine ecosystem than to farm native ones there.

"The biggest environmental danger we face from salmon escapes is when farming species within their native range, such as Atlantic salmon in the Atlantic Ocean," says Dr. Ian Fleming, Director of the Ocean Sciences Centre at Memorial University of Newfoundland.

He is presenting the results of his latest research on the risks of fugitive farmed fish at the 2005 meeting of the American Association for the Advancement of Science in Washington D.C. on February 18. The work was supported by Science and Engineering Research Canada (NSERC).



Fish raised in large ocean pens have genetic traits that make them distinct from their wild counterparts. This has led critics of the fish farming industry to argue that farmed fish that break free – a common occurrence – might breed with native ones, perhaps compromising the health of the entire species and threatening its ability to survive in its natural setting.

Dr. Fleming says the key to avoiding this real ecological danger is to break what is normally considered a biological taboo: deliberately introducing a new species into an ecosystem. "The real issue is a fascinating one – it’s to analyze if it is actually better to be farming Atlantic salmon on the West Coast rather than farming Pacific salmon there," says Dr. Fleming. "That might be considered a heretical idea, in the sense that we would be introducing an exotic species into the Pacific, and all our knowledge of invasive species suggests that we shouldn’t do that. But with salmonids, particularly Atlantic salmon, there are indications that that might not be such a bad idea."

Atlantic and Pacific salmon do not interbreed successfully. If escapees find themselves on the opposite coast, this substantially reduces the likelihood that they will ecologically overwhelm local salmon populations.

With the rapid growth of ocean fish farming along the world’s coastlines, and a general desire to limit the ecological impact of this activity, Dr. Fleming says there’s presently more scientific and public interest in finding solutions, whatever they might be.

"There’s more of a consensus on trying to work toward solutions rather than arguing over whether there is a problem or not," explains Dr. Fleming. "Making fish farming more sustainable is certainly in everyone’s better interests."

Dr. Fleming himself is a transplant from the West Coast. He was previously an Associate Professor at the Coastal Marine Experiment Station and Department of Fisheries and Wildlife at Oregon State University, before moving to the Ocean Sciences Centre in the summer of 2004.

His interest in fish farming started 15 years ago when he began doctoral work on fish evolution. "I thought of hatcheries as an experiment that’s being done for me," says Dr. Fleming, who spent a decade studying such facilities in Norway. That country has the largest salmon farming industry in the world.

The Ocean Sciences Centre at Memorial University of Newfoundland is a key North American venue for fish farming research, with 11 full-time faculty members, along with a similar number of adjunct and cross-appointed professors, and dozens of graduate students

Dr. Ian Flemming | EurekAlert!
Further information:
http://www.mun.ca
http://www.nserc-crsng.gc.ca

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Asian tiger mosquito on the move

22.05.2018 | Life Sciences

Self-illuminating pixels for a new display generation

22.05.2018 | Trade Fair News

Embryonic development: How do limbs develop from cells?

22.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>