Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Foiling fugitive fish

21.02.2005


A leading Canadian fish farming scientist is stirring the scientific waters by arguing that it may be safer to risk introducing exotic salmon into a marine ecosystem than to farm native ones there.

"The biggest environmental danger we face from salmon escapes is when farming species within their native range, such as Atlantic salmon in the Atlantic Ocean," says Dr. Ian Fleming, Director of the Ocean Sciences Centre at Memorial University of Newfoundland.

He is presenting the results of his latest research on the risks of fugitive farmed fish at the 2005 meeting of the American Association for the Advancement of Science in Washington D.C. on February 18. The work was supported by Science and Engineering Research Canada (NSERC).



Fish raised in large ocean pens have genetic traits that make them distinct from their wild counterparts. This has led critics of the fish farming industry to argue that farmed fish that break free – a common occurrence – might breed with native ones, perhaps compromising the health of the entire species and threatening its ability to survive in its natural setting.

Dr. Fleming says the key to avoiding this real ecological danger is to break what is normally considered a biological taboo: deliberately introducing a new species into an ecosystem. "The real issue is a fascinating one – it’s to analyze if it is actually better to be farming Atlantic salmon on the West Coast rather than farming Pacific salmon there," says Dr. Fleming. "That might be considered a heretical idea, in the sense that we would be introducing an exotic species into the Pacific, and all our knowledge of invasive species suggests that we shouldn’t do that. But with salmonids, particularly Atlantic salmon, there are indications that that might not be such a bad idea."

Atlantic and Pacific salmon do not interbreed successfully. If escapees find themselves on the opposite coast, this substantially reduces the likelihood that they will ecologically overwhelm local salmon populations.

With the rapid growth of ocean fish farming along the world’s coastlines, and a general desire to limit the ecological impact of this activity, Dr. Fleming says there’s presently more scientific and public interest in finding solutions, whatever they might be.

"There’s more of a consensus on trying to work toward solutions rather than arguing over whether there is a problem or not," explains Dr. Fleming. "Making fish farming more sustainable is certainly in everyone’s better interests."

Dr. Fleming himself is a transplant from the West Coast. He was previously an Associate Professor at the Coastal Marine Experiment Station and Department of Fisheries and Wildlife at Oregon State University, before moving to the Ocean Sciences Centre in the summer of 2004.

His interest in fish farming started 15 years ago when he began doctoral work on fish evolution. "I thought of hatcheries as an experiment that’s being done for me," says Dr. Fleming, who spent a decade studying such facilities in Norway. That country has the largest salmon farming industry in the world.

The Ocean Sciences Centre at Memorial University of Newfoundland is a key North American venue for fish farming research, with 11 full-time faculty members, along with a similar number of adjunct and cross-appointed professors, and dozens of graduate students

Dr. Ian Flemming | EurekAlert!
Further information:
http://www.mun.ca
http://www.nserc-crsng.gc.ca

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>