Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Foiling fugitive fish


A leading Canadian fish farming scientist is stirring the scientific waters by arguing that it may be safer to risk introducing exotic salmon into a marine ecosystem than to farm native ones there.

"The biggest environmental danger we face from salmon escapes is when farming species within their native range, such as Atlantic salmon in the Atlantic Ocean," says Dr. Ian Fleming, Director of the Ocean Sciences Centre at Memorial University of Newfoundland.

He is presenting the results of his latest research on the risks of fugitive farmed fish at the 2005 meeting of the American Association for the Advancement of Science in Washington D.C. on February 18. The work was supported by Science and Engineering Research Canada (NSERC).

Fish raised in large ocean pens have genetic traits that make them distinct from their wild counterparts. This has led critics of the fish farming industry to argue that farmed fish that break free – a common occurrence – might breed with native ones, perhaps compromising the health of the entire species and threatening its ability to survive in its natural setting.

Dr. Fleming says the key to avoiding this real ecological danger is to break what is normally considered a biological taboo: deliberately introducing a new species into an ecosystem. "The real issue is a fascinating one – it’s to analyze if it is actually better to be farming Atlantic salmon on the West Coast rather than farming Pacific salmon there," says Dr. Fleming. "That might be considered a heretical idea, in the sense that we would be introducing an exotic species into the Pacific, and all our knowledge of invasive species suggests that we shouldn’t do that. But with salmonids, particularly Atlantic salmon, there are indications that that might not be such a bad idea."

Atlantic and Pacific salmon do not interbreed successfully. If escapees find themselves on the opposite coast, this substantially reduces the likelihood that they will ecologically overwhelm local salmon populations.

With the rapid growth of ocean fish farming along the world’s coastlines, and a general desire to limit the ecological impact of this activity, Dr. Fleming says there’s presently more scientific and public interest in finding solutions, whatever they might be.

"There’s more of a consensus on trying to work toward solutions rather than arguing over whether there is a problem or not," explains Dr. Fleming. "Making fish farming more sustainable is certainly in everyone’s better interests."

Dr. Fleming himself is a transplant from the West Coast. He was previously an Associate Professor at the Coastal Marine Experiment Station and Department of Fisheries and Wildlife at Oregon State University, before moving to the Ocean Sciences Centre in the summer of 2004.

His interest in fish farming started 15 years ago when he began doctoral work on fish evolution. "I thought of hatcheries as an experiment that’s being done for me," says Dr. Fleming, who spent a decade studying such facilities in Norway. That country has the largest salmon farming industry in the world.

The Ocean Sciences Centre at Memorial University of Newfoundland is a key North American venue for fish farming research, with 11 full-time faculty members, along with a similar number of adjunct and cross-appointed professors, and dozens of graduate students

Dr. Ian Flemming | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>