Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diamonds key to a sparkling listening experience

21.02.2005


Music lovers could be in for the ultimate listening experience, thanks to a new range of speakers containing parts made of diamond, writes Marina Murphy in the Chemistry & Industry magazine. The unique properties of diamond make the speakers less susceptible to distortion and thus provide a clearer sound, say their manufacturers Bowers & Wilkins (B&W), UK.



The 800 Series speakers contain diamond ‘tweeter domes’ – the parts responsible for producing high-frequency sound. The domes are tiny components that move backwards and forwards in the speaker. The compressed air that results creates a pressure wave, which in turn produces sound.

Because diamond is rigid and very strong, the sound waves pass through the domes very quickly. But some tweeter domes made of traditional materials such as aluminium are susceptible to distortion at high frequencies.


For example, aluminium tweeter domes break up at a frequency of around 30 kHz, whereas the diamond tweeter domes are stable up to 70 kHz.

“The unique properties of diamond mean that we can create tweeter domes that are stiff, light and remain rigid throughout the audible frequency and beyond,” said Dr Gary Geaves, Head of Research at B&W.

Although other companies have produced diamond speaker parts, B&W’s are unique in that their diamond domes are skirted. This ‘skirt’ – a cylindrical section at the end of the dome – adds further rigidity, making the speakers even less susceptible to distortion.

The diamond is grown synthetically directly from methane and hydrogen gas using a carefully-regulated process called chemical vapour deposition (CVD), which involves heating the gases to very high temperatures (2000-3000oC) in a chamber, so that their carbon–hydrogen bonds break down to produce a carbon plasma that can grow a dome-shaped substrate in the chamber.

To produce a diamond using CVD takes a few days. It is a low cost process that will allow B&W to produce their speakers in large volumes. The CVD process was developed by the company Element Six, UK.

Jacqueline Ali | alfa
Further information:
http://www.chemind.org
http://www.soci.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>