Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify target for cancer drugs

18.02.2005


For nearly a decade, scientists have been trying to fully understand a particular communication pathway inside of cells that contributes to many malignant brain and prostate cancers. While scientists have identified elements of this pathway, other key components have remained a mystery. Researchers at Whitehead Institute now have discovered a missing puzzle piece, a finding that may present drug makers with a significant new cancer target.



"We believe that we have identified a component that researchers have been looking for since 1996," says Whitehead Associate Member David Sabatini, who is also an Assistant Professor of Biology at MIT.

At the heart of this new research is a protein called Akt, an important player in the regulation of cell division and survival. Abnormally high activation of Akt has long been implicated in a variety of cancers. If Akt travels to the cell membrane, it is switched on and promotes cell division, often contributing to tumor growth as a result. However, as long as it stays within the cell cytoplasm, it remains relatively inactive. That’s because the tumor-suppressor protein PTEN keeps Akt in check by destroying lipids in the cell membrane that normally draw Akt to the surface. In a sense, PTEN keeps a leash on Akt and thus suppresses cell division.


But when PTEN is mutated and unable to function, Akt breaks free. It makes its way to the cell membrane where other proteins activate it, thereby enabling Akt to contribute to tumor growth. "When a cell loses PTEN through, say, a mutation, Akt goes gangbusters," says Sabatini.

The exact means by which Akt switches on when it reaches the cell membrane has only been partially understood. As a result, researchers have lacked a clear idea about how to prevent the process. However, in the February 18 issue of the journal Science, researchers from the Sabatini lab report on discovering an important missing piece of the activation process.

This missing component, a molecule called mTOR, is a protein that influences a cell’s ability to expand in size. mTOR has been widely studied as the target for the immunosuppressant drug rapamycin (in fact, mTOR is an acronym for "mammalian target of rapamycin"). In July of 2004, Dos Sarbassov, a scientist in Sabatini’s lab, discovered a new protein that mTOR interacts with called rictor, but he wasn’t yet sure of what these two proteins do together. In this latest paper, Sarbassov reports that when mTOR and rictor bind and form a complex, they help activate Akt by adding a phosphate group to a sequence of its amino acids (a process called "phosphorylation").

This process occurs not only in human cells but in other organisms such as the fruit fly. Finding this complex conserved in species as diverse as flies and humans supports the claim that the mTOR/rictor complex is indeed a missing piece of the puzzle.

According to Sarbassov, "If we find a molecule that can block the mTOR/rictor complex, then we may be able to prevent Akt from becoming active and contributing to tumor formation."

David Cameron | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>