Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue proves concept of using nano-materials for drug discovery

18.02.2005


This image, taken with an optical microscope, demonstrates the successful test of a prototype for a new class of miniature devices to study synthetic cell membranes in an effort to speed the discovery of new drugs for a variety of diseases, including cancer. Purdue University researchers created a chip about one centimeter square that holds thousands of tiny vessels sitting on top of a material that contains numerous pores. The researchers tested the devices with an enzyme that produces a blue color when combined with a liquid that contains molecules small enough to easily pass through the pores. The enzyme was placed inside the vessels – on the inner surface of the "nanoporous" membranes – and the liquid was placed outside each vessel so that it covered the opposite side of the membranes. When the liquid diffused through the membrane’s pores, it mixed with the enzyme, causing a reaction and turning blue in the process, which demonstrated that the device works. (School of Chemical Engineering, Purdue University)


Researchers at Purdue University have built and demonstrated a prototype for a new class of miniature devices to study synthetic cell membranes in an effort to speed the discovery of new drugs for a variety of diseases, including cancer.
The researchers created a chip about one centimeter square that holds thousands of tiny vessels sitting on top of a material that contains numerous pores. This "nanoporous" material makes it possible to carry out reactions inside the vessels. The goal is to produce "laboratories-on-a-chip" less than a half-inch square that might contain up to a million test chambers, or "reactors," each capable of screening an individual drug, said Gil Lee, the project’s leader and an associate professor of chemical engineering. "What we are reporting now is a proof of concept," said Lee, one of three researchers who wrote a paper that details new findings in the current issue (Feb. 15) of the journal Langmuir. The two other researchers are Zhigang Wang, a postdoctoral fellow at Purdue; and Richard Haasch, a research scientist at the University of Illinois at Urbana-Champaign.

The work is part of overall research being carried out by an interdisciplinary team of scientists and engineers who are members of a Center for Membrane Protein Biotechnology. The center was created at Purdue in 2003 through a grant from the Indiana 21st Century Research and Technology Fund, established by the state of Indiana to promote high-tech research and to help commercialize innovations. The vessels discussed in the research paper are cylindrical cavities that are open at the top and sealed at the bottom with a material called alumina, which contains numerous pores measured in nanometers, or billionths of a meter.


Researchers are working to duplicate how cell membranes function on chips in order to test the potential effectiveness of new drugs to treat diseases. Membranes, which surround cells and regulate the movement of molecules into and out of the cells, contain a variety of proteins, some of which are directly responsible for cancer’s ability to resist anti-tumor chemotherapy drugs. These proteins act as tiny pumps that quickly remove chemotherapy drugs from tumor cells, making the treatment less effective. Cancer cells exposed to chemotherapy drugs produce a disproportionately large number of the pumps, causing the cells to become progressively more resistant to anticancer drugs.

Engineers and scientists in the Purdue center are trying to find drugs that deactivate the pumps, which would make the chemotherapy drugs more effective. The researchers are developing synthetic cell membranes to mimic the real thing and then plan to use those membranes to create chips containing up to 1 million test chambers. Each chamber would be covered with a membrane containing the proteins, and the chambers could then be used to search for drugs that deactivate the pumps, Lee said.

Such an advanced technology could be used to quickly screen millions of untested drug compounds that exist in large pharmaceutical "libraries." The chips could dramatically increase the number of experiments that are possible with a small amount of protein. "It’s been very hard to study these proteins because they are difficult to produce in large quantities," Lee said. "The devices we have created offer the promise of making chips capable of running thousands of reactions with the same amount of protein now needed to run only about 10 reactions."

Findings being reported in the paper detail how researchers created the device with the same "microfabrication" techniques used to make computer chips. The reactors range in diameter from about 400 to 60 microns, or millionths of a meter. Human hairs are about 100 microns wide. "You can think of it as a micro-petri dish for studying biochemical reactions," Lee said.

The alumina contains pores smaller than 100 nanometers, and the total volume of the reactors varies from 1-10 nanoliters. "What’s unique about this device is that the surface has nanometer-scale pores in it," Lee said. "The concept is fairly simple – there is an inorganic porous membrane – in this case alumina, which separates the reaction chamber from a solution. The pores in this membrane are nanometer in scale, so they do not allow proteins to readily pass through the membrane but will allow smaller molecules to pass. "This allows us to do separation right in the reactor, which means we can do reactions that could not be done before in such a small device. We can study membrane proteins in a fundamentally new way, which is very important because many future drugs to treat diseases will likely work by controlling proteins in cell membranes."

Researchers tested the devices with an enzyme that produces a blue color when combined with a liquid that contains molecules small enough to easily pass through the pores. The enzyme, which is a protein, was placed inside the vessels – on the inner surface of the alumina membranes – and the liquid was placed outside each vessel so that it covered the opposite side of the membranes. When the liquid diffused through the membrane’s pores, it mixed with the enzyme, causing a reaction and turning blue in the process, which demonstrated that the device works.

The Center for Membrane Protein Biotechnology combines a diverse range of researchers, from engineers to chemists, and pharmaceutical scientists to physicists. The research is supported by the Bindley Bioscience Center, which is part of Discovery Park, Purdue’s hub for interdisciplinary research.

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>