Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Worms, slugs inspire robotic devices

18.02.2005


Drawing on an understanding of how slugs, leeches and earthworms traverse their environments and grasp objects, a team of Case Western Reserve University biologists and engineers has developed two flexible robotic devices that could make invasive medical procedures such as colonoscopies safer for patients and easier for doctors to administer.



The researchers from Case’s departments of biology, mechanical and aerospace engineering and electrical engineering and computer science have obtained a patent for a new endoscopic device and a provisional patent for a gripping device that may have industrial as well as medical uses. "We have taken our understanding of biology to use it as an inspiration for novel robotic devices," said Hillel Chiel, Case professor of biology and principal investigator on the project. "By taking nature seriously, we have created novel, flexible and adaptive devices that will be useful for a variety of applications."

The endoscopic device, constructed of three muscle-like actuators made of latex bladders and surrounded by nylon mesh, looks like a nine-inch long hollow worm. The actuator segments, inflating and contracting in sequence, propel the device forward, mimicking the undulating movement of slugs and worms. "This device can literally worm its way into complicated places or into curving tubing such as the colon," Chiel explained.


The current prototype can be added to existing medical endoscopes. Eventually, the device may be miniaturized and equipped with sensors that enable it to work autonomously and self propelling. According to Chiel, the research team will also be working to make the device more flexible, imitating the reflex responses of slugs and worms to changes in their environment. As a result of these refinements, the new device could reduce discomfort and the risk of injury among patients undergoing invasive medical tests, and thereby increase compliance with doctors’ orders to have such tests performed.

The second device, a biologically inspired "gripper," mimics the way hungry California sea slugs in Chiel’s lab grasp seaweed in its many highly slippery forms. The prototype consists of a four-inch, ball-like device, surrounded by muscle-like actuators in the form of tubes or rings. One of these tubes contains a mouth that opens and closes. The ball pushes forward, opens its mouth and grasps at the object before it.

This device could meet an industrial need for grippers that can pick up soft objects without destroying them. Building grippers to pick up soft materials has been very hard," Chiel explained. "Most gripper devices are fairly rigid and designed to work effectively with things that have a fixed orientation or a certain texture or toughness."

Chiel also noted that if the gripping device were miniaturized and equipped with sensors, it could have medical applications as well. Such a device, for example, might eat its way through occluded blood vessels.

Animal behavior and robots

For nearly two decades and with support from the National Science Foundation, Chiel has studied the detailed movements of soft-tissue animals like the California sea slug, chronicling their behavior on film and with MRI imaging..

"My focus has been basic science," Chiel explained. "If we can understand how nature controls adaptive behavior through its neural and biomechanical mechanisms, it will have spinoffs in novel devices. But it will also help us understand behavior in more complicated systems like human beings."

Taking Chiel’s findings about animal motion, Roger Quinn, director of the Biorobotics Laboratory in the engineering school, and Randy Beer, Case professor of electrical engineering and computer science, designed the robotic devices. Elizabeth Mangan, a graduate student in mechanical engineering, built them. A second graduate student in mechanical engineering, Gregory Sutton, also contributed to the "Gripper" project.

The two new devices join other inventions--including several generations of insect-like robots that imitate cockroach behavior--created by researchers from the College of Arts and Sciences and the Case School of Engineering.

Susan Griffith | EurekAlert!
Further information:
http://www.case.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>