Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Worms, slugs inspire robotic devices

18.02.2005


Drawing on an understanding of how slugs, leeches and earthworms traverse their environments and grasp objects, a team of Case Western Reserve University biologists and engineers has developed two flexible robotic devices that could make invasive medical procedures such as colonoscopies safer for patients and easier for doctors to administer.



The researchers from Case’s departments of biology, mechanical and aerospace engineering and electrical engineering and computer science have obtained a patent for a new endoscopic device and a provisional patent for a gripping device that may have industrial as well as medical uses. "We have taken our understanding of biology to use it as an inspiration for novel robotic devices," said Hillel Chiel, Case professor of biology and principal investigator on the project. "By taking nature seriously, we have created novel, flexible and adaptive devices that will be useful for a variety of applications."

The endoscopic device, constructed of three muscle-like actuators made of latex bladders and surrounded by nylon mesh, looks like a nine-inch long hollow worm. The actuator segments, inflating and contracting in sequence, propel the device forward, mimicking the undulating movement of slugs and worms. "This device can literally worm its way into complicated places or into curving tubing such as the colon," Chiel explained.


The current prototype can be added to existing medical endoscopes. Eventually, the device may be miniaturized and equipped with sensors that enable it to work autonomously and self propelling. According to Chiel, the research team will also be working to make the device more flexible, imitating the reflex responses of slugs and worms to changes in their environment. As a result of these refinements, the new device could reduce discomfort and the risk of injury among patients undergoing invasive medical tests, and thereby increase compliance with doctors’ orders to have such tests performed.

The second device, a biologically inspired "gripper," mimics the way hungry California sea slugs in Chiel’s lab grasp seaweed in its many highly slippery forms. The prototype consists of a four-inch, ball-like device, surrounded by muscle-like actuators in the form of tubes or rings. One of these tubes contains a mouth that opens and closes. The ball pushes forward, opens its mouth and grasps at the object before it.

This device could meet an industrial need for grippers that can pick up soft objects without destroying them. Building grippers to pick up soft materials has been very hard," Chiel explained. "Most gripper devices are fairly rigid and designed to work effectively with things that have a fixed orientation or a certain texture or toughness."

Chiel also noted that if the gripping device were miniaturized and equipped with sensors, it could have medical applications as well. Such a device, for example, might eat its way through occluded blood vessels.

Animal behavior and robots

For nearly two decades and with support from the National Science Foundation, Chiel has studied the detailed movements of soft-tissue animals like the California sea slug, chronicling their behavior on film and with MRI imaging..

"My focus has been basic science," Chiel explained. "If we can understand how nature controls adaptive behavior through its neural and biomechanical mechanisms, it will have spinoffs in novel devices. But it will also help us understand behavior in more complicated systems like human beings."

Taking Chiel’s findings about animal motion, Roger Quinn, director of the Biorobotics Laboratory in the engineering school, and Randy Beer, Case professor of electrical engineering and computer science, designed the robotic devices. Elizabeth Mangan, a graduate student in mechanical engineering, built them. A second graduate student in mechanical engineering, Gregory Sutton, also contributed to the "Gripper" project.

The two new devices join other inventions--including several generations of insect-like robots that imitate cockroach behavior--created by researchers from the College of Arts and Sciences and the Case School of Engineering.

Susan Griffith | EurekAlert!
Further information:
http://www.case.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>