Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists rid stem cell culture of key animal cells

18.02.2005


Tackling a pressing and controversial technical barrier in stem cell biology, scientists at the WiCell Research Institute and the University of Wisconsin-Madison have crafted a recipe that allows researchers to grow human embryonic stem cells in the absence of mouse-derived "feeder" cells, long thought to be a source of potential contamination for the therapeutically promising cells.


Caption: This image depicts a colony of human embryonic stem cells grown over a period of 10 months in the absence of mouse feeder cells. The cell nuclei are stained green; the cell surface appears in red. Photo: courtesy Ren-He Xu



The new findings, appear today (Feb. 17) in the journal Nature Methods and come on the heels of a recent University of California study showing that existing stem cell lines are already contaminated with an animal molecule. The potential threat of animal pathogens tainting human stem cell lines poses a problem for the safe clinical use of many, if not all, of the current cell lines now in use.

Until now, scientists have had to grow and sustain stem cells through the tedious daily task of generating mouse feeder cells from mouse embryos. Feeder cells, or fibroblasts, are connective tissue cells that form the matrix upon which stem cells grow.


The mouse feeder cells were an important ingredient in the mix of culture materials required to keep stem cells in their undifferentiated "blank slate" state. Embryonic stem cells are capable of forming any of the 220 tissues and cells in the human body and, in culture, are constantly trying to migrate down different developmental pathways. Maintaining stock cultures in their undifferentiated state is critical.

The feeder cell dogma now can be overturned, says lead investigator Ren-He Xu, a senior scientist at WiCell, a private, nonprofit research institute. "This work completely gets rid of the need for feeder cells," says Xu. "It also significantly reduces the daily labor of preparing the feeder cell-conditioned medium."

"It is important that the culture of human ES cells be simplified so that the average scientist can use them without extensive prior training," says James Thomson, a UW-Madison professor of anatomy and a co-author of the Nature Methods paper. "This development is a good step in that direction. Also, clinically, the feeder cells were one of the main sources of potential contamination with pathogens, so their elimination should improve safety. However, not all the animal components have been removed from the media yet, but this is an important step."

Working with three of WiCell’s five human embryonic stem cell lines, Xu and his team explored the molecular interactions within the stem cell growth medium. He discovered that, in certain conditions, a protein known as fibroblast growth factor 2 (FGF2) accomplishes the same critical role that feeder cells are thought to play: ensuring that the stem cells remain in their undifferentiated state and capable of proliferation.

"We’ve got it down to the mechanism," Xu says.

Moreover, Xu made the surprising discovery that the very molecules that encourage human embryonic stem cells to differentiate appear to inhibit differentiation in mouse embryonic stem cells.

Aside from feeder cells, two other sources of animal material remain in stem cell culture materials. One, Matrigel, is a product that is essentially a plate-coating matrix of cells extracted from mouse tumors. Serum replacement, which is bovine in origin, is the other animal material still needed to culture stem cells.

Xu became interested in unveiling molecules derived from the mouse feeder cells because, in their absence, stem cells start to differentiate within two to three days. Xu started by evaluating the effect of changing stem cell growth conditions - using less feeder cell material, or no serum replacement, for instance.

Unexpectedly, Xu found that the presence of serum replacement promoted stem cell differentiation. Digging deeper, he found that serum replacement mimics the activity of bone morphogenetic protein (BMP), a molecule known to kick-start embryonic development, or in this case, cell differentiation.

If serum replacement triggers stem cell differentiation, Xu deduced, there must be feeder cell molecules that oppose BMP activity. Experiments confirmed this to be true.

Next, Xu elevated concentrations of FGF2, a protein routinely used for human embryonic stem cell culture, to test whether FGF2 preserves undifferentiated stem cells in the absence of BMP. The result was that "the cells looked perfect." Xu says he has grown the resulting stem cells in the desired undifferentiated state for almost a year.

Although the new work "dramatically reduces the possibility of contamination" from animal pathogens, Xu warns that the continued use of serum replacement and Matrigel means that contamination remains a concern. The ultimate goal, he says, would be to culture stem cells in media completely free of any animal products.

Ren-He Xu | EurekAlert!
Further information:
http://www.wicell.org

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>