Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem-Cell Research Hints at Better Looking Cosmetic and Reconstructive Surgery

18.02.2005


Stem-cell researchers have shown how cosmetic surgery, such as wrinkle removal and breast augmentation, might be improved with natural implants that keep their original size and shape better than synthetics.



Cosmetic surgery might be performed with stem-cell generated natural tissues instead of synthetic implants. Saline and silicone implants for breast augmentation may rupture, leak, and interfere with breast cancer detection on mammograms. stem-cell generated natural tissue implants should avoid these problems. Reconstructive surgery to replace tissues lost to cancer or other disease could benefit from stem-cell generated natural implants that do not shrink or lose their shape. Studies have shown that conventional soft tissue implants can lose 40 percent to 60 percent of their volume over time. Examples are breast tissue reconstruction after breast cancer surgery and facial soft tissue reconstruction following cancer or trauma surgeries.

Natural implants often require separate surgical procedures from a healthy location of the patient’s body to obtain tissue for constructing the implant. The stem-cell approach does not require extensive surgery because cells needed for the implant are obtained in a less invasive needle procedure. Whitaker investigator Jeremy Mao, Ph.D., of the University of Illinois at Chicago presented his results at the annual meeting of the American Association for the Advancement of Science in Washington, D.C., saying that a stem-cell approach might eliminate the need for the additional surgery and may produce a long-lasting, shapely, and natural implant. The research will also be published in April in the journal Tissue Engineering.


Mao’s research group started with a line of human stem cells taken from the bone marrow of a healthy, young volunteer. These mesenchymal stem cells can transform themselves into many different cell types under appropriate conditions, including those that form cartilage, bone, and fat. In this case, the stem cells were grown with substances that encouraged them to become fat-producing cells. Cells from this culture were placed in a Food and Drug Administration-approved scaffold that mimics the natural environment in which fat cells grow in the body. The hydrogel scaffold can be molded into any shape or size. These cell seeded scaffolds were placed under the skin in eight laboratory mice. After four weeks, the implants were removed and examined.

The researchers found that the stem cells had differentiated into fat generating cells and the implant had retained both its original size and shape. Conventional implants begin to lose shape within a few weeks, so Mao’s group was encouraged by the fact that their implants retained their original dimensions for a month.

These results demonstrate the potential of using such an approach in medical applications. But more, longer term studies will be needed and many questions remain to be answered. Further research is needed on the density of cells used in the culture, the rate at which the scaffold degrades, the relationship between the implant and existing host tissues, and whether any additional growth factors will be required to ensure that the implant develops a healthy and lasting blood supply. "Nonetheless, the present approach represents another step toward an alternative tissue engineering approach for soft tissue augmentation and reconstruction," the researchers reported.

Mao’s colleagues include Adel Alhadlaq and Minghui Tang of the University of Illinois at Chicago. The research was supported by grants from the National Institute of Dental and Craniofacial Research and the National Institute of Biomedical Imaging and Bioengineering at the National Institutes of Health.

Mao received a Whitaker Biomedical Engineering Research grant in 2002 for this line of work. In ongoing research, he has used adult stem cells to grow cartilage and bone in the shape of a human joint end, a potential medical implant for orthopedic and reconstructive surgeries.

Frank Blanchard | EurekAlert!
Further information:
http://www.whitaker.org

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>