Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem-Cell Research Hints at Better Looking Cosmetic and Reconstructive Surgery

18.02.2005


Stem-cell researchers have shown how cosmetic surgery, such as wrinkle removal and breast augmentation, might be improved with natural implants that keep their original size and shape better than synthetics.



Cosmetic surgery might be performed with stem-cell generated natural tissues instead of synthetic implants. Saline and silicone implants for breast augmentation may rupture, leak, and interfere with breast cancer detection on mammograms. stem-cell generated natural tissue implants should avoid these problems. Reconstructive surgery to replace tissues lost to cancer or other disease could benefit from stem-cell generated natural implants that do not shrink or lose their shape. Studies have shown that conventional soft tissue implants can lose 40 percent to 60 percent of their volume over time. Examples are breast tissue reconstruction after breast cancer surgery and facial soft tissue reconstruction following cancer or trauma surgeries.

Natural implants often require separate surgical procedures from a healthy location of the patient’s body to obtain tissue for constructing the implant. The stem-cell approach does not require extensive surgery because cells needed for the implant are obtained in a less invasive needle procedure. Whitaker investigator Jeremy Mao, Ph.D., of the University of Illinois at Chicago presented his results at the annual meeting of the American Association for the Advancement of Science in Washington, D.C., saying that a stem-cell approach might eliminate the need for the additional surgery and may produce a long-lasting, shapely, and natural implant. The research will also be published in April in the journal Tissue Engineering.


Mao’s research group started with a line of human stem cells taken from the bone marrow of a healthy, young volunteer. These mesenchymal stem cells can transform themselves into many different cell types under appropriate conditions, including those that form cartilage, bone, and fat. In this case, the stem cells were grown with substances that encouraged them to become fat-producing cells. Cells from this culture were placed in a Food and Drug Administration-approved scaffold that mimics the natural environment in which fat cells grow in the body. The hydrogel scaffold can be molded into any shape or size. These cell seeded scaffolds were placed under the skin in eight laboratory mice. After four weeks, the implants were removed and examined.

The researchers found that the stem cells had differentiated into fat generating cells and the implant had retained both its original size and shape. Conventional implants begin to lose shape within a few weeks, so Mao’s group was encouraged by the fact that their implants retained their original dimensions for a month.

These results demonstrate the potential of using such an approach in medical applications. But more, longer term studies will be needed and many questions remain to be answered. Further research is needed on the density of cells used in the culture, the rate at which the scaffold degrades, the relationship between the implant and existing host tissues, and whether any additional growth factors will be required to ensure that the implant develops a healthy and lasting blood supply. "Nonetheless, the present approach represents another step toward an alternative tissue engineering approach for soft tissue augmentation and reconstruction," the researchers reported.

Mao’s colleagues include Adel Alhadlaq and Minghui Tang of the University of Illinois at Chicago. The research was supported by grants from the National Institute of Dental and Craniofacial Research and the National Institute of Biomedical Imaging and Bioengineering at the National Institutes of Health.

Mao received a Whitaker Biomedical Engineering Research grant in 2002 for this line of work. In ongoing research, he has used adult stem cells to grow cartilage and bone in the shape of a human joint end, a potential medical implant for orthopedic and reconstructive surgeries.

Frank Blanchard | EurekAlert!
Further information:
http://www.whitaker.org

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>