Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solution to Pollution: New Bacteria Eats Toxic Waste

17.02.2005


Utah State University researchers recently discovered a new bacteria that is a natural cleanser for contaminated soil. The bacteria, now being used around the world, is an inexpensive and highly effective solution to pollution.

“This project shows mother nature’s capability to be a master engineer,” said Ron Sims, biological and irrigation engineering department head. “Past disposal practices and accidental spills have put these carcinogens in our environment, and nature has figured out a way to cleanse herself. We want to be able to understand it better through genomic analysis.”

Engineers often use other human-made chemicals to clean up contaminated sites, but these microbes will provide a natural solution, said Sims. Bioremediation cleans up the environment by allowing living organisms to degrade or transform hazardous organic contaminants using natural biology. It offers an attractive solution to pollution cleanup because it can occur on-site and at relatively little cost compared to other alternatives, he continued. The team received a $1.5 million dollar contract from the U.S. Department of Energy to further study the bacteria. Sims discovered the microbes on a landsite in Libby, Mont. contaminated by chemical carcinogens called polycyclic aromatic hydrocarbons (PAH’s). The site had been used by industry as a place to apply preservatives to wood, yet Sims found the land to be relatively free of toxins and asked the question, why? After conducting soil analysis tests, Sims found microbes in the soil that had destroyed the toxic chemicals.



Sims then collaborated with researchers from the Utah State biology department to identify the microbes. The three Libby-site microbes responsible for the remediation were mycobacterium isolates. The other two mycobacterium isolates capable of degrading PAH’s were found at other locations in the United States by Carl Cerniglia at the Arkansas Toxicology Center. Because few of these mycobacterium isolates have been characterized genetically, Utah State’s Center for Integrated Biosystems funded the biologists to examine the genetic material for the five isolates. They answered questions about the size of their chromosome and whether plasmids were present in the mycobacterium. “Putting together genomes tells us a lot about the history of the world and may even help us with its future,” said Joanne Hughes, a Utah State Biology professor.

The Department of Energy will sequence the genetic material of the microbes, and the researchers will then participate in the annotation process by which genes in the sequences will be identified. The researchers will be able to understand the genetic material that allows these bacteria to degrade the PAHs and survive in the soil. Such knowledge may help researchers better understand and utilize the organisms to destroy PAH contaminants in the environment by applying engineering principles to microbial biotechnology, said Sims. “This research is extending itself to the world, and we are really excited about it,” said Anne Anderson, a biology professor and team member.

The group wants to fully understand how these microbes function and survive in the environment so contaminated sites around the world can reap the benefits. Collaborations are currently under way in Nizhnekamsk in the Russian Federation to assist with the treatment of industrial residues, in Poland to renew soils for agricultural production and in the Netherlands to clean up sediments dredged from canals and waterways. “I want to congratulate the Utah State team on the funding for this project,” said Joop Harmsen, senior scientist at Alterra Research Center and Wageningen University in the Netherlands. “PAHs have contaminated large amounts of sediment in the Netherlands, and doing this naturally through bioremediation is the most cost-effective way to treat the contaminated sediments.”

The research involves many levels of cooperation between the sciences and engineering fields but also extends to social scientists and economists. Utah State undergraduates and graduate students from the Colleges of Engineering and Science are also participating in the project. The researchers said student and faculty interest in this project is high because of its human-interest orientation.

In Orson Wells’ classic tale “War of the Worlds,” invisible bacteria saved the world as well as the people in it. Through this project, life is imitating art and through these unique bacteria the world may stay a little cleaner, said Sims.

| newswise
Further information:
http://www.usu.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>