Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solution to Pollution: New Bacteria Eats Toxic Waste

17.02.2005


Utah State University researchers recently discovered a new bacteria that is a natural cleanser for contaminated soil. The bacteria, now being used around the world, is an inexpensive and highly effective solution to pollution.

“This project shows mother nature’s capability to be a master engineer,” said Ron Sims, biological and irrigation engineering department head. “Past disposal practices and accidental spills have put these carcinogens in our environment, and nature has figured out a way to cleanse herself. We want to be able to understand it better through genomic analysis.”

Engineers often use other human-made chemicals to clean up contaminated sites, but these microbes will provide a natural solution, said Sims. Bioremediation cleans up the environment by allowing living organisms to degrade or transform hazardous organic contaminants using natural biology. It offers an attractive solution to pollution cleanup because it can occur on-site and at relatively little cost compared to other alternatives, he continued. The team received a $1.5 million dollar contract from the U.S. Department of Energy to further study the bacteria. Sims discovered the microbes on a landsite in Libby, Mont. contaminated by chemical carcinogens called polycyclic aromatic hydrocarbons (PAH’s). The site had been used by industry as a place to apply preservatives to wood, yet Sims found the land to be relatively free of toxins and asked the question, why? After conducting soil analysis tests, Sims found microbes in the soil that had destroyed the toxic chemicals.



Sims then collaborated with researchers from the Utah State biology department to identify the microbes. The three Libby-site microbes responsible for the remediation were mycobacterium isolates. The other two mycobacterium isolates capable of degrading PAH’s were found at other locations in the United States by Carl Cerniglia at the Arkansas Toxicology Center. Because few of these mycobacterium isolates have been characterized genetically, Utah State’s Center for Integrated Biosystems funded the biologists to examine the genetic material for the five isolates. They answered questions about the size of their chromosome and whether plasmids were present in the mycobacterium. “Putting together genomes tells us a lot about the history of the world and may even help us with its future,” said Joanne Hughes, a Utah State Biology professor.

The Department of Energy will sequence the genetic material of the microbes, and the researchers will then participate in the annotation process by which genes in the sequences will be identified. The researchers will be able to understand the genetic material that allows these bacteria to degrade the PAHs and survive in the soil. Such knowledge may help researchers better understand and utilize the organisms to destroy PAH contaminants in the environment by applying engineering principles to microbial biotechnology, said Sims. “This research is extending itself to the world, and we are really excited about it,” said Anne Anderson, a biology professor and team member.

The group wants to fully understand how these microbes function and survive in the environment so contaminated sites around the world can reap the benefits. Collaborations are currently under way in Nizhnekamsk in the Russian Federation to assist with the treatment of industrial residues, in Poland to renew soils for agricultural production and in the Netherlands to clean up sediments dredged from canals and waterways. “I want to congratulate the Utah State team on the funding for this project,” said Joop Harmsen, senior scientist at Alterra Research Center and Wageningen University in the Netherlands. “PAHs have contaminated large amounts of sediment in the Netherlands, and doing this naturally through bioremediation is the most cost-effective way to treat the contaminated sediments.”

The research involves many levels of cooperation between the sciences and engineering fields but also extends to social scientists and economists. Utah State undergraduates and graduate students from the Colleges of Engineering and Science are also participating in the project. The researchers said student and faculty interest in this project is high because of its human-interest orientation.

In Orson Wells’ classic tale “War of the Worlds,” invisible bacteria saved the world as well as the people in it. Through this project, life is imitating art and through these unique bacteria the world may stay a little cleaner, said Sims.

| newswise
Further information:
http://www.usu.edu

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>