Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solution to Pollution: New Bacteria Eats Toxic Waste

17.02.2005


Utah State University researchers recently discovered a new bacteria that is a natural cleanser for contaminated soil. The bacteria, now being used around the world, is an inexpensive and highly effective solution to pollution.

“This project shows mother nature’s capability to be a master engineer,” said Ron Sims, biological and irrigation engineering department head. “Past disposal practices and accidental spills have put these carcinogens in our environment, and nature has figured out a way to cleanse herself. We want to be able to understand it better through genomic analysis.”

Engineers often use other human-made chemicals to clean up contaminated sites, but these microbes will provide a natural solution, said Sims. Bioremediation cleans up the environment by allowing living organisms to degrade or transform hazardous organic contaminants using natural biology. It offers an attractive solution to pollution cleanup because it can occur on-site and at relatively little cost compared to other alternatives, he continued. The team received a $1.5 million dollar contract from the U.S. Department of Energy to further study the bacteria. Sims discovered the microbes on a landsite in Libby, Mont. contaminated by chemical carcinogens called polycyclic aromatic hydrocarbons (PAH’s). The site had been used by industry as a place to apply preservatives to wood, yet Sims found the land to be relatively free of toxins and asked the question, why? After conducting soil analysis tests, Sims found microbes in the soil that had destroyed the toxic chemicals.



Sims then collaborated with researchers from the Utah State biology department to identify the microbes. The three Libby-site microbes responsible for the remediation were mycobacterium isolates. The other two mycobacterium isolates capable of degrading PAH’s were found at other locations in the United States by Carl Cerniglia at the Arkansas Toxicology Center. Because few of these mycobacterium isolates have been characterized genetically, Utah State’s Center for Integrated Biosystems funded the biologists to examine the genetic material for the five isolates. They answered questions about the size of their chromosome and whether plasmids were present in the mycobacterium. “Putting together genomes tells us a lot about the history of the world and may even help us with its future,” said Joanne Hughes, a Utah State Biology professor.

The Department of Energy will sequence the genetic material of the microbes, and the researchers will then participate in the annotation process by which genes in the sequences will be identified. The researchers will be able to understand the genetic material that allows these bacteria to degrade the PAHs and survive in the soil. Such knowledge may help researchers better understand and utilize the organisms to destroy PAH contaminants in the environment by applying engineering principles to microbial biotechnology, said Sims. “This research is extending itself to the world, and we are really excited about it,” said Anne Anderson, a biology professor and team member.

The group wants to fully understand how these microbes function and survive in the environment so contaminated sites around the world can reap the benefits. Collaborations are currently under way in Nizhnekamsk in the Russian Federation to assist with the treatment of industrial residues, in Poland to renew soils for agricultural production and in the Netherlands to clean up sediments dredged from canals and waterways. “I want to congratulate the Utah State team on the funding for this project,” said Joop Harmsen, senior scientist at Alterra Research Center and Wageningen University in the Netherlands. “PAHs have contaminated large amounts of sediment in the Netherlands, and doing this naturally through bioremediation is the most cost-effective way to treat the contaminated sediments.”

The research involves many levels of cooperation between the sciences and engineering fields but also extends to social scientists and economists. Utah State undergraduates and graduate students from the Colleges of Engineering and Science are also participating in the project. The researchers said student and faculty interest in this project is high because of its human-interest orientation.

In Orson Wells’ classic tale “War of the Worlds,” invisible bacteria saved the world as well as the people in it. Through this project, life is imitating art and through these unique bacteria the world may stay a little cleaner, said Sims.

| newswise
Further information:
http://www.usu.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>