Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Sulfide-Binding Mechanism Found in Deep-Sea Tubeworms

17.02.2005


Charles Fisher, Penn State and Pat Hickey, Woods Hole Oceanographic Institution - Permission is granted for one-time use to illustrate articles about this research only.
This is an image of a group of the giant hydrothermal vent tubeworm, Riftia pachyptila, taken around 2500 m at 9ºN along the East Pacific Rise (Pacific Ocean). The red portion of the worm exposed at the top of the white tube is the gas exchange organ, or plume. This is where sulfide and oxygen enter the worm and bind to the hemoglobins. The plume gets its deep red color from the large extracelllular hemoglobins circulating throughout the worm.


The discovery that zinc contained in the hemoglobin of deep-sea tubeworms is used to bind and transport nutrients to symbiotic bacteria will be published online in the Proceedings of the National Academy of Science during the week of 14 February 2005. Further research with the hemoglobin could lead to its use in a variety of ways, including as an artificial substitute for oxygen carriers in human blood.

Tubeworms living near hydrothermal vents and cold seeps in the world’s oceans must adapt to sulfide levels that would prove lethal to most aquatic life while simultaneously providing hydrogen sulfide molecules to symbiotic bacteria within their bodies. A Penn State research team, in collaboration with researchers at the University of Massachusetts Medical School in Worcester and in the United Kingdom, reports a new mechanism for sulfide binding in the hemoglobins, the same molecules that carry oxygen to the worm’s own cells. The research team reports that zinc ions in the hemoglobin bind hydrogen sulfide, the first example of any hemoglobin incorporating a metal specifically for that purpose.

"The worms need to bind free sulfide so that it doesn’t react with oxygen, to reduce sulfide exposure in their tissues, and to provide the sulfide to the bacteria that, as far as we know, provide all of the worm’s nutritional needs," says Charles Fisher, professor of biology at Penn State, whose research team includes Penn State graduate assistant Jason Flores, the lead author of the research paper, and William Royer, professor of biochemistry and molecular pharmacology at the University of Massachusetts. "Our discovery, which results from a very multi-disciplinary approach, replaces the current paradigm for the evolution of worm hemoglobin by demonstrating that hydrogen-sulfide molecules are bound by a metal ion rather than by an arrangement of amino acids."



In addition to a very large hexagonal hemoglobin, typical of many worm species, the deep-sea hydrothermal vent tubeworm, Riftia pachyptila, has a second, smaller hemoglobin. The research group characterized this second hemoglobin by X-ray crystallography, providing the first such detailed structural information of a protein from a hydrothermal-vent animal.

Hydrothermal-vent species must adapt to conditions of pressure and chemicals that are toxic to most other animals. While the worms are able to absorb the oxygen and sulfide through their gills, they have no organs for capturing or digesting food. Their only known source of nutrition comes from internal bacteria, which, in turn, rely on the worm’s hemoglobin for both sulfide and oxygen. The unusual form of hemoglobin gives the worms an advantage over other organisms competing for space near the vents and may play a role in their ability to adapt to a wide temperature range.

"The hollow spherical structure in the hemoglobin of this species includes 12 zinc ions in depressions at the outer part of the molecule," explains Flores. "These ions form a reversible bond with the hydrogen sulfide molecules that could block the oxygen-carrying sites, allowing the molecule to simultaneously carry oxygen and sulfide."

Flores says that the hollow spherical structure is unique. "Human and other hemoglobins have a ’globular’ form, but none have been discovered with this symmetrical sphere. This sphere is a very stable shape, which may be part of the adaptation for the extreme conditions in which these worms thrive."

Because zinc is the second most utilized transition metal (after iron) in biological systems, the characterization of this hemoglobin’s structure, assembly, and function could provide a starting point for other studies into the incorporation of metal ions into biological functions. The structure also could prove a useful means of sulfide transport for chemical synthesis and detection systems. In addition, the hemoglobin itself could have medical applications. Recent medical studies have focused on the worm’s large hexagonal hemoglobins as possible substitutes for oxygen carriers in human blood. "The newly characterized molecule is substantially smaller than the hexagonal hemoglobin, reducing problems of removal by kidney filtration, but still has six times as many active oxygen-carrying sites as human hemoglobin," Flores adds.

This research was supported by the Alfred P. Sloan Foundation, the National Oceanic and Atmospheric Administration National Undersea Research Program, the National Institutes of Health, and the National Science Foundation.

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>