Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Sulfide-Binding Mechanism Found in Deep-Sea Tubeworms

17.02.2005


Charles Fisher, Penn State and Pat Hickey, Woods Hole Oceanographic Institution - Permission is granted for one-time use to illustrate articles about this research only.
This is an image of a group of the giant hydrothermal vent tubeworm, Riftia pachyptila, taken around 2500 m at 9ºN along the East Pacific Rise (Pacific Ocean). The red portion of the worm exposed at the top of the white tube is the gas exchange organ, or plume. This is where sulfide and oxygen enter the worm and bind to the hemoglobins. The plume gets its deep red color from the large extracelllular hemoglobins circulating throughout the worm.


The discovery that zinc contained in the hemoglobin of deep-sea tubeworms is used to bind and transport nutrients to symbiotic bacteria will be published online in the Proceedings of the National Academy of Science during the week of 14 February 2005. Further research with the hemoglobin could lead to its use in a variety of ways, including as an artificial substitute for oxygen carriers in human blood.

Tubeworms living near hydrothermal vents and cold seeps in the world’s oceans must adapt to sulfide levels that would prove lethal to most aquatic life while simultaneously providing hydrogen sulfide molecules to symbiotic bacteria within their bodies. A Penn State research team, in collaboration with researchers at the University of Massachusetts Medical School in Worcester and in the United Kingdom, reports a new mechanism for sulfide binding in the hemoglobins, the same molecules that carry oxygen to the worm’s own cells. The research team reports that zinc ions in the hemoglobin bind hydrogen sulfide, the first example of any hemoglobin incorporating a metal specifically for that purpose.

"The worms need to bind free sulfide so that it doesn’t react with oxygen, to reduce sulfide exposure in their tissues, and to provide the sulfide to the bacteria that, as far as we know, provide all of the worm’s nutritional needs," says Charles Fisher, professor of biology at Penn State, whose research team includes Penn State graduate assistant Jason Flores, the lead author of the research paper, and William Royer, professor of biochemistry and molecular pharmacology at the University of Massachusetts. "Our discovery, which results from a very multi-disciplinary approach, replaces the current paradigm for the evolution of worm hemoglobin by demonstrating that hydrogen-sulfide molecules are bound by a metal ion rather than by an arrangement of amino acids."



In addition to a very large hexagonal hemoglobin, typical of many worm species, the deep-sea hydrothermal vent tubeworm, Riftia pachyptila, has a second, smaller hemoglobin. The research group characterized this second hemoglobin by X-ray crystallography, providing the first such detailed structural information of a protein from a hydrothermal-vent animal.

Hydrothermal-vent species must adapt to conditions of pressure and chemicals that are toxic to most other animals. While the worms are able to absorb the oxygen and sulfide through their gills, they have no organs for capturing or digesting food. Their only known source of nutrition comes from internal bacteria, which, in turn, rely on the worm’s hemoglobin for both sulfide and oxygen. The unusual form of hemoglobin gives the worms an advantage over other organisms competing for space near the vents and may play a role in their ability to adapt to a wide temperature range.

"The hollow spherical structure in the hemoglobin of this species includes 12 zinc ions in depressions at the outer part of the molecule," explains Flores. "These ions form a reversible bond with the hydrogen sulfide molecules that could block the oxygen-carrying sites, allowing the molecule to simultaneously carry oxygen and sulfide."

Flores says that the hollow spherical structure is unique. "Human and other hemoglobins have a ’globular’ form, but none have been discovered with this symmetrical sphere. This sphere is a very stable shape, which may be part of the adaptation for the extreme conditions in which these worms thrive."

Because zinc is the second most utilized transition metal (after iron) in biological systems, the characterization of this hemoglobin’s structure, assembly, and function could provide a starting point for other studies into the incorporation of metal ions into biological functions. The structure also could prove a useful means of sulfide transport for chemical synthesis and detection systems. In addition, the hemoglobin itself could have medical applications. Recent medical studies have focused on the worm’s large hexagonal hemoglobins as possible substitutes for oxygen carriers in human blood. "The newly characterized molecule is substantially smaller than the hexagonal hemoglobin, reducing problems of removal by kidney filtration, but still has six times as many active oxygen-carrying sites as human hemoglobin," Flores adds.

This research was supported by the Alfred P. Sloan Foundation, the National Oceanic and Atmospheric Administration National Undersea Research Program, the National Institutes of Health, and the National Science Foundation.

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>