Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Experiments provide proof of how traveling in groups protects insects


Few events involving animals are more dramatic than when they band together and head out on the march cross-country. Among examples are the many thousands of wildebeests and other hoofed mammals that form herds and migrate across the African plains.

Countless millions of Mormon crickets and young locusts also sometimes unite with their own kind and form teeming, hungry islands of life that devour everything in their path that’s edible. Some spectacular marching packs stretch several miles wide and extend 10 miles or so in length. And they can travel a mile or so a day.

Why such groups of insects form has mystified humans for thousands of years. One firmly held belief was that God was punishing men and women for their sins. A more recent, scientific theory has been the "safety-in-numbers" idea -- that the small animals congregate periodically as a way of protecting themselves from predators such as birds and rodents.

Now, a trio of insect experts has developed what they believe is strong new evidence that the latter theory is correct. By gluing radio transmitters -- each weighing less than half a gram -- to the backs of Mormon crickets in northeastern Utah and northwestern Colorado, Drs. Gregory A. Sword, Patrick D. Lorch and Darryl T. Gwynne showed experimentally that band formation indeed boosted insect survival.

Sword is a research ecologist with the U.S. Department of Agriculture’s Agricultural Research Service, Lorch is a postdoctoral fellow in biology at the University of North Carolina at Chapel Hill and Gwynne is a biology professor at the University of Toronto at Mississauga. Their work, reported in the Feb. 17 issue of Nature, is unique since previously it has been too difficult to monitor what happened to specific insects among untold millions.

"With these remarkable new light-weight transmitters, we could keep track of individual crickets and find out what happened to them when they were in the band and also when we removed them and put them in other locations by themselves," Lorch said.

"In repeated experiments, we found that within two days, 50 percent to 60 percent of insects transplanted out of the band were dead because something ate them," he said. "On the other hand, we found no deaths during the same period among the crickets we monitored that stayed with the band."

That individuals removed from the group suffered gory deaths was clear from partially chewed transmitters the scientists recovered, often with body parts still attached, Lorch said. Researchers retrieved several devices from trees and burrows. Two were lost entirely and, presumably because Mormon crickets can’t fly, carried off a long way by birds and out of radio receiver range.

"What this new work appears to show is that even though being part of the band has its own costs -- such as greater competition for food and cannibalism of injured crickets – overall, there’s a clear benefit to band members," Lorch said. "Predation occurs anyway, but any given individual is far better protected than it would be if it were on its own."

The research, supported by the USDA, is part of a larger study designed to learn whether scientists can predict and possibly change the path of massive insect bands, he said.

"In the United States nowadays, Mormon crickets just cost farmers and others a lot of money, but in parts of Africa and elsewhere, locusts can cause widespread famine because they consume crops, and the people there sometimes have nothing else to eat."

UNC’s biology department is part of the College of Arts and Sciences.

David Williamson | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>