Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experiments provide proof of how traveling in groups protects insects

17.02.2005


Few events involving animals are more dramatic than when they band together and head out on the march cross-country. Among examples are the many thousands of wildebeests and other hoofed mammals that form herds and migrate across the African plains.



Countless millions of Mormon crickets and young locusts also sometimes unite with their own kind and form teeming, hungry islands of life that devour everything in their path that’s edible. Some spectacular marching packs stretch several miles wide and extend 10 miles or so in length. And they can travel a mile or so a day.

Why such groups of insects form has mystified humans for thousands of years. One firmly held belief was that God was punishing men and women for their sins. A more recent, scientific theory has been the "safety-in-numbers" idea -- that the small animals congregate periodically as a way of protecting themselves from predators such as birds and rodents.


Now, a trio of insect experts has developed what they believe is strong new evidence that the latter theory is correct. By gluing radio transmitters -- each weighing less than half a gram -- to the backs of Mormon crickets in northeastern Utah and northwestern Colorado, Drs. Gregory A. Sword, Patrick D. Lorch and Darryl T. Gwynne showed experimentally that band formation indeed boosted insect survival.

Sword is a research ecologist with the U.S. Department of Agriculture’s Agricultural Research Service, Lorch is a postdoctoral fellow in biology at the University of North Carolina at Chapel Hill and Gwynne is a biology professor at the University of Toronto at Mississauga. Their work, reported in the Feb. 17 issue of Nature, is unique since previously it has been too difficult to monitor what happened to specific insects among untold millions.

"With these remarkable new light-weight transmitters, we could keep track of individual crickets and find out what happened to them when they were in the band and also when we removed them and put them in other locations by themselves," Lorch said.

"In repeated experiments, we found that within two days, 50 percent to 60 percent of insects transplanted out of the band were dead because something ate them," he said. "On the other hand, we found no deaths during the same period among the crickets we monitored that stayed with the band."

That individuals removed from the group suffered gory deaths was clear from partially chewed transmitters the scientists recovered, often with body parts still attached, Lorch said. Researchers retrieved several devices from trees and burrows. Two were lost entirely and, presumably because Mormon crickets can’t fly, carried off a long way by birds and out of radio receiver range.

"What this new work appears to show is that even though being part of the band has its own costs -- such as greater competition for food and cannibalism of injured crickets – overall, there’s a clear benefit to band members," Lorch said. "Predation occurs anyway, but any given individual is far better protected than it would be if it were on its own."

The research, supported by the USDA, is part of a larger study designed to learn whether scientists can predict and possibly change the path of massive insect bands, he said.

"In the United States nowadays, Mormon crickets just cost farmers and others a lot of money, but in parts of Africa and elsewhere, locusts can cause widespread famine because they consume crops, and the people there sometimes have nothing else to eat."

UNC’s biology department is part of the College of Arts and Sciences.

David Williamson | EurekAlert!
Further information:
http://www.unc.edu/news/

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>