Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Critical role in programmed cell death identified

17.02.2005


Dartmouth Medical School geneticists have found links in the cell death machinery of worms and mammals, opening new avenues for studying and targeting a process vital to development and implicated in cancer and autoimmune diseases.



The work, reported in the February 17 issue of Nature, demonstrates the role of mitochondria, the cellular power plant, in prompting worm cells to self destruct. These results unify cell death models along the evolutionary spectrum, from simple animal systems to humans. In spite of its name, programmed cell death, or apoptosis, is essential for life; it’s needed for nervous system development and it keeps the body up and running. Miscues and failures are instrumental in cancer, autoimmune disorders or neurodegenerative diseases.

Mitochondria, the organelles responsible for producing energy to fuel cell processes, also appear to release molecules that set the cell death program in motion. While their activity in mammalian cell death was known, mitochondrial involvement in worms had not previously been shown.


The new work, led by Dr. Barbara Conradt, assistant professor of genetics at Dartmouth Medical School, reveals the importance of mitochondria in cell death in the roundworm C. elegans, enhancing the view of how cell death is conserved from worms to humans. "Now it seems that there is really one way of killing cells and it involves these mitochondria. Using genetics, we could rigorously show that mitochondria are part of it. It unifies two different hypothesis and makes worms a great model to analyze how cell death is induced, " Conradt said.

Mitochondria are dynamic structures, constantly changing shape, budding and fusing. In cells instructed to die, the mitochondria tend to become smaller or fragment, but whether this fragmentation is a requirement for cell death or a byproduct has been unclear, until now. Conradt and her colleagues determined that mitochondrial fragmentation is required for cells to die and that the process that commits cells to the point of no return happens quickly. Conradt said it’s the clearest confirmation yet that mitochondrial fragmentation is critical in killing cells.

C. elegans worms are a convenient model system, Conradt explained, with a well documented cell lineage that facilitates genetic manipulation. Their cell death machinery is simple, with one component for each of the different factors involved in the central cell killing apparatus. Mammals on the other hand have multiple components or families of proteins for these factors; moreover, their cell death is more sporadic and harder to pinpoint.

In worms, scientists know exactly which cells are dying, and when and where. During development, 1,090 cells form, but 131 of these cells die; the same cells always die at the same time and at the same place. This feature makes it possible to identify mutant worms, in which cells that should have died instead live. Worms whose cell death program is blocked survive, at least in the lab, with their 131 extra cells. Such studies are impractical in mammals because cell death is essential and animals with a cell death defect die.

The researchers demonstrated that when they cause worm mitochondria to fragment without instructing cells to die, the cells still die and when they block fragmentation, the cells survive; in other words, blocking fragmentation prevents cell death, inducing fragmentation provokes cell death. "This programmed cell death is so important and the more players we know that are involved, the more potential targets we have for therapeutics," Conradt said. During development, for example, many neurons are built, but after birth, more than half are eliminated in the central nervous system in mammals: "It’s a common safeguard, to ensure that neurons talk to the right neighbors and make the right connections." Also, if cells do not die on schedule, unregulated growth can lead to tumors and other complications.

"Mammalian studies that have implicated mitochondrial fragmentation in cell death have been done under rather artificial conditions, in tissue culture, not using natural cell death stimuli, " Conradt explains. "Our work was done in vivo; in the worm. We looked at cells that normally die, so it’s more solid."

Hali Wickner | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>