Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diabetes’ link to obesity broken in mice

16.02.2005


Scientists at Washington University School of Medicine in St. Louis used genetically modified mice to uncover a potentially important link between diabetes and obesity.



By genetically altering production of a factor found in skeletal muscle, scientists produced mice that can’t get fat but do develop early signs of diabetes. Reversing the alteration produced mice that can become obese but do not develop diabetes. The findings provide important insights for scientists struggling to find new ways to cope with the unprecedented epidemic of obesity now spreading through the United States and other nations. Obesity brings with it a range of health consequences including sharply increased risk of type 2 diabetes, the most common form of diabetes.

Scientists broke the link to improve their understanding of the network of factors that lead from obesity to the onset of diabetes. Based on what they learned, they applied a drug treatment in their new transgenic mice and in a different, previously established mouse line that suffers from obesity and a diabetes-like condition. In both groups, the drug increased insulin sensitivity, which is a primary goal of diabetes treatment. "These results confirm that the links between obesity and diabetes show great promise as targets for new therapies that act as ’metabolic modulators’ in muscle," says senior author Daniel P. Kelly, M.D., professor of medicine, of pediatrics and of molecular biology and pharmacology.


The study appears in the February 2005 issue of Cell Metabolism. It reveals new details of the activities of the peroxisome proliferator-activated receptors (PPARs), a family of receptors that affects the way cells respond to energy resources.

Diabetes disrupts the body’s ability to manage energy resources including both fat and sugar. Insulin is a primary regulator of these resources. When the intake of calories exceeds the ability of the body to store them, insulin does not work as well, leading to an increase in blood sugar levels. The work by Kelly’s group shows that this problem starts by diversion of fats to muscle, triggering an abnormal activation of PPAR. PPAR in turn sends signals to the cells to stop responding to insulin, resulting in hazardously high blood sugar levels.

Kelly’s research group had previously shown that a member of the PPAR family, PPAR-alpha, was unusually active in heart and skeletal muscle of diabetic mice. PPAR-alpha normally becomes active in response to fats. It "revs up" the machinery cells use to make energy from fat, according to Kelly. "It’s an adaptive response that helps the cell deal with all the fat that’s coming in, but our notion was that it might also play a role in the development of diabetes," he explains. "We thought PPAR-alpha might also be telling cells, look, we have all this fat coming in, so we’re not going to need glucose to make energy, so let’s shut down glucose burning. And that’s exactly what happens in diabetes."

To test their ideas, Kelly and lead author Brian N. Finck, Ph.D., research instructor in medicine, engineered a line of mice with extra PPAR-alpha in their skeletal muscle. They found the mice’s skeletal muscle cells could "chew up" fat at remarkable speeds, preventing obesity even when the mice were fed a high-fat diet. Although they were lean, the mice were also "on their way to becoming diabetic," according to Kelly. Insulin resistance and glucose intolerance -- two key harbingers of diabetes -- increased in the mice. Kelly’s group traced the glucose intolerance to PPAR-alpha’s ability to shut down genes involved in glucose uptake and use. When Kelly’s lab tested a line of mice where PPAR-alpha had been genetically knocked out, they found the reverse was true. The mice could get just as obese as normal mice on a high-fat diet, but they did not develop early signs of diabetes.

Based on what they learned about PPAR-alpha’s effects, scientists gave a drug that inhibited an important enzyme in the processes that let muscle cells make energy from fat. PPAR-alpha normally activates this enzyme as part of its efforts to accelerate fat metabolism, and blocking it essentially tricked the cell into thinking that PPAR-alpha was no longer activated. Insulin sensitivity increased as a result.

To follow up, Kelly’s lab is attempting to rescue the new mouse line from glucose intolerance and insulin resistance. PPAR-alpha seems to convince cells that they don’t need glucose because they have plenty of energy available from fat, so Kelly will try to increase energy demand or trick cells into thinking they have less energy available. "One obvious experiment is to exercise the animals, increasing their muscle energy requirements to see if we can make them more insulin sensitive," Kelly says. "Another option is to develop ways to decrease the cellular accumulation of a compound known as ATP, which is the key product of cellular energy-making processes."

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>