Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diabetes’ link to obesity broken in mice

16.02.2005


Scientists at Washington University School of Medicine in St. Louis used genetically modified mice to uncover a potentially important link between diabetes and obesity.



By genetically altering production of a factor found in skeletal muscle, scientists produced mice that can’t get fat but do develop early signs of diabetes. Reversing the alteration produced mice that can become obese but do not develop diabetes. The findings provide important insights for scientists struggling to find new ways to cope with the unprecedented epidemic of obesity now spreading through the United States and other nations. Obesity brings with it a range of health consequences including sharply increased risk of type 2 diabetes, the most common form of diabetes.

Scientists broke the link to improve their understanding of the network of factors that lead from obesity to the onset of diabetes. Based on what they learned, they applied a drug treatment in their new transgenic mice and in a different, previously established mouse line that suffers from obesity and a diabetes-like condition. In both groups, the drug increased insulin sensitivity, which is a primary goal of diabetes treatment. "These results confirm that the links between obesity and diabetes show great promise as targets for new therapies that act as ’metabolic modulators’ in muscle," says senior author Daniel P. Kelly, M.D., professor of medicine, of pediatrics and of molecular biology and pharmacology.


The study appears in the February 2005 issue of Cell Metabolism. It reveals new details of the activities of the peroxisome proliferator-activated receptors (PPARs), a family of receptors that affects the way cells respond to energy resources.

Diabetes disrupts the body’s ability to manage energy resources including both fat and sugar. Insulin is a primary regulator of these resources. When the intake of calories exceeds the ability of the body to store them, insulin does not work as well, leading to an increase in blood sugar levels. The work by Kelly’s group shows that this problem starts by diversion of fats to muscle, triggering an abnormal activation of PPAR. PPAR in turn sends signals to the cells to stop responding to insulin, resulting in hazardously high blood sugar levels.

Kelly’s research group had previously shown that a member of the PPAR family, PPAR-alpha, was unusually active in heart and skeletal muscle of diabetic mice. PPAR-alpha normally becomes active in response to fats. It "revs up" the machinery cells use to make energy from fat, according to Kelly. "It’s an adaptive response that helps the cell deal with all the fat that’s coming in, but our notion was that it might also play a role in the development of diabetes," he explains. "We thought PPAR-alpha might also be telling cells, look, we have all this fat coming in, so we’re not going to need glucose to make energy, so let’s shut down glucose burning. And that’s exactly what happens in diabetes."

To test their ideas, Kelly and lead author Brian N. Finck, Ph.D., research instructor in medicine, engineered a line of mice with extra PPAR-alpha in their skeletal muscle. They found the mice’s skeletal muscle cells could "chew up" fat at remarkable speeds, preventing obesity even when the mice were fed a high-fat diet. Although they were lean, the mice were also "on their way to becoming diabetic," according to Kelly. Insulin resistance and glucose intolerance -- two key harbingers of diabetes -- increased in the mice. Kelly’s group traced the glucose intolerance to PPAR-alpha’s ability to shut down genes involved in glucose uptake and use. When Kelly’s lab tested a line of mice where PPAR-alpha had been genetically knocked out, they found the reverse was true. The mice could get just as obese as normal mice on a high-fat diet, but they did not develop early signs of diabetes.

Based on what they learned about PPAR-alpha’s effects, scientists gave a drug that inhibited an important enzyme in the processes that let muscle cells make energy from fat. PPAR-alpha normally activates this enzyme as part of its efforts to accelerate fat metabolism, and blocking it essentially tricked the cell into thinking that PPAR-alpha was no longer activated. Insulin sensitivity increased as a result.

To follow up, Kelly’s lab is attempting to rescue the new mouse line from glucose intolerance and insulin resistance. PPAR-alpha seems to convince cells that they don’t need glucose because they have plenty of energy available from fat, so Kelly will try to increase energy demand or trick cells into thinking they have less energy available. "One obvious experiment is to exercise the animals, increasing their muscle energy requirements to see if we can make them more insulin sensitive," Kelly says. "Another option is to develop ways to decrease the cellular accumulation of a compound known as ATP, which is the key product of cellular energy-making processes."

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>