Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano mechanism to control protein may lead to new protein engineering

16.02.2005


UCLA scientists have created a mechanism at the nanoscale to externally control the function and action of a protein.



"We can switch a protein on and off, and while we have controlled a specific protein, we believe our approach will work with virtually any protein," said Giovanni Zocchi, assistant professor of physics at UCLA, member of the California NanoSystems Institute and leader of the research effort. "This research has the potential to start a new approach to protein engineering."

The research, published in the journal Physical Review Letters, potentially could lead to a new generation of targeted "smart" pharmaceutical drugs that are active only in cells where a certain gene is expressed, or a certain DNA sequence is present, Zocchi said. Such drugs would have reduced side effects. The research, federally funded by the National Science Foundation, also may lead to a deeper understanding of proteins’ molecular architecture.


Proteins are switched on and off in living cells by a mechanism called allosteric control; proteins are regulated by other molecules that bind to their surface, inducing a change of conformation, or distortion in the shape, of the protein, making the protein either active or inactive, Zocchi explained. "We have made an artificial mechanism of allosteric control based on mechanical tension -- the first time this has ever been done," Zocchi said. "Potentially, the applications could be very far-reaching and beneficial if the research continues to progress well.

"We insert a molecular spring on the protein, and we can control the stiffness of the spring externally," he said. "We chemically string a short piece of DNA around the protein. We can switch the protein on and off by changing the stiffness of the DNA. We have made a new molecule, which we can control. By gluing together two disparate pieces of the cell’s molecular machinery, a protein and a piece of DNA, we have created a spring-loaded protein which can be turned on and off."

Zocchi’s graduate student, Brian Choi, worked with a transport protein called MBP (maltose binding protein), expressed in a bacterium. The MBP protein binds and transports a sugar.

The first applications Zocchi foresees for the new molecules are as amplified molecular probes. Currently it is difficult for scientists to study a single live cell and find what gene it is expressing, but with an amplified molecular probe, in principle one could inject the probe into a single cell and detect that the cell is expressing a particular gene, Zocchi said.

An amplified molecular probe would make it possible to study the individuality of cells, with applications in stem cell research and the early detection of disease, said Zocchi, whose laboratory was established in part through start-up funding from UCLA’s Division of Physical Sciences. "I’m interested in conformational changes of macromolecules, and in understanding the physical basis of this allosteric mechanism, which is central to the regulation in the cell," Zocchi said.

Harlan Lebo | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>