Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano mechanism to control protein may lead to new protein engineering

16.02.2005


UCLA scientists have created a mechanism at the nanoscale to externally control the function and action of a protein.



"We can switch a protein on and off, and while we have controlled a specific protein, we believe our approach will work with virtually any protein," said Giovanni Zocchi, assistant professor of physics at UCLA, member of the California NanoSystems Institute and leader of the research effort. "This research has the potential to start a new approach to protein engineering."

The research, published in the journal Physical Review Letters, potentially could lead to a new generation of targeted "smart" pharmaceutical drugs that are active only in cells where a certain gene is expressed, or a certain DNA sequence is present, Zocchi said. Such drugs would have reduced side effects. The research, federally funded by the National Science Foundation, also may lead to a deeper understanding of proteins’ molecular architecture.


Proteins are switched on and off in living cells by a mechanism called allosteric control; proteins are regulated by other molecules that bind to their surface, inducing a change of conformation, or distortion in the shape, of the protein, making the protein either active or inactive, Zocchi explained. "We have made an artificial mechanism of allosteric control based on mechanical tension -- the first time this has ever been done," Zocchi said. "Potentially, the applications could be very far-reaching and beneficial if the research continues to progress well.

"We insert a molecular spring on the protein, and we can control the stiffness of the spring externally," he said. "We chemically string a short piece of DNA around the protein. We can switch the protein on and off by changing the stiffness of the DNA. We have made a new molecule, which we can control. By gluing together two disparate pieces of the cell’s molecular machinery, a protein and a piece of DNA, we have created a spring-loaded protein which can be turned on and off."

Zocchi’s graduate student, Brian Choi, worked with a transport protein called MBP (maltose binding protein), expressed in a bacterium. The MBP protein binds and transports a sugar.

The first applications Zocchi foresees for the new molecules are as amplified molecular probes. Currently it is difficult for scientists to study a single live cell and find what gene it is expressing, but with an amplified molecular probe, in principle one could inject the probe into a single cell and detect that the cell is expressing a particular gene, Zocchi said.

An amplified molecular probe would make it possible to study the individuality of cells, with applications in stem cell research and the early detection of disease, said Zocchi, whose laboratory was established in part through start-up funding from UCLA’s Division of Physical Sciences. "I’m interested in conformational changes of macromolecules, and in understanding the physical basis of this allosteric mechanism, which is central to the regulation in the cell," Zocchi said.

Harlan Lebo | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>