Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Embryonic stem cells treated with growth factor reverse hemophilia in mice


University of North Carolina at Chapel Hill researchers have made a discovery that may have implications for the treatment of liver-based genetic defects such as hemophilia A and B in humans.

Mouse embryonic stem cells treated in culture with a growth factor and then injected into the liver reverse a form of hemophilia in mice analogous to hemophilia B in humans, the new study shows. A report of the study appears in the journal Proceedings of the National Academy of Sciences today (Feb. 15).

The genetically altered mice lack the clotting substance factor IX, which in humans results in the hereditary bleeding disorder known as hemophilia B. This disease, much less common than hemophilia A, affects roughly one of every 35,000 people, primarily males. Although embryonic stem, or ES, cells can differentiate into most cell types in the body, numerous problems have arisen in translating their potential into therapeutic strategies, the UNC School of Medicine study authors reported.

These problems include poor engraftment, limited function, rejection of engrafted cells by the immune system and teratomas, tumors involving a mixture of tissue not normally found at that site. The new study used a line of mouse ES cells developed in the laboratory of senior co-author Dr. Oliver Smithies, Excellence professor of pathology and laboratory medicine at UNC.

A member of the National Academy of Sciences, Smithies has won many honors for gene targeting, a technique he pioneered. This technique allows for the development of mice with specific genetic mutations that mimic human illnesses such as hemophilia. In 2001, Smithies received the Albert Lasker Award for Basic Medical Research, often called "America’s Nobel."

In the study, ES cells were treated with fibroblast growth factor for seven days prior to injection. As expected, this resulted in ES cells differentiating into early endoderm like precursors, which the researchers named "putative endoderm precursors," or PEPs. Endoderm refers to the inner layer of early embryonic cells that develops into the digestive and respiratory systems.

"Not only do ES cells differentiate into PEPs, they also engraft, persist, differentiate further and then function following injection, resulting in the persistent production of factor IX protein that can only come from a hepatocyte (liver cell) and hemophilia reversal," said study lead author Dr. Jeffrey H. Fair, associate professor of surgery and division chief of abdominal transplant surgery.

Moreover, he said, the PEP cells robustly engraft within the liver and were not recognized by the immune system as foreign. "Within a few weeks, PEPs became hepatocytes," Fair added. "They went from something that is a very early grandparent of the hepatocyte to becoming hepatocytes. After 115 days, nearly four months after injection, mice still produced factor IX without immune suppression. This occurred even in mice that were a complete immunologic tissue mismatch to the PEPs. In addition, the incidence of teratomas was low."

The researchers believe this study demonstrates the power of multidisciplinary collaboration, said co-lead author Dr. Bruce A. Cairns, assistant professor of surgery and director of research in the N.C. Jaycee Burn Center. "This approach may not only be beneficial, but required in order to solve complex problems such as these in medicine."

Although a number of questions need to be answered, this work has great potential for future applications, not only as a novel therapeutic possibility for hemophilia but also for other genetic or acquired diseases of the liver, said senior co-author Dr. Jeffery A. Frelinger, Kenan professor and chairman of microbiology and immunology. "The data published in this study shows that embryonic stem cells partially differentiated, are able to remain in the liver and be functional without apparent immunological rejection. This transforms them into possible candidates for cellular transplantation into the liver."

Along with Fair, Cairns, Smithies and Frelinger, co-authors from the department of surgery are Dr. Michael A. LaPaglia, Dr. Montserrat Caballero, Dr. Anthony A. Meyer (chairman) and W. Andrew Pleasant. From the department of pathology and laboratory medicine are Drs. Seigo Hatada and Hyung-suk Kim. From the College of Arts and Sciences’ department of biology are Drs. Tong Gui and Darrel W. Stafford; and from the department of genetics, Dr. Larysa Pevny.

The research was supported by grants from the National Institutes of Health and the N.C. Jaycee Burn Center.

Leslie H. Lang | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>