Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Findings suggests that blocking estrogen may be crucial to lung cancer survival


New and effective treatments for lung cancer may rest on their ability to hinder the action of estrogen in lung cancer cells, according to two studies published in the current issue of Cancer Research. The University of Pittsburgh studies build on current knowledge about the relationship between estrogen and lung cancer growth and suggest that blocking estrogen may be vitally important to improving survival from the disease.

Since 1930, a 600 percent increase in death rates from lung cancer has been reported in women in the United States, leading some experts to suggest that women may be more susceptible to lung cancer than men. The current research contends that this could be due to the effects of estrogen on the lungs. "Our studies continue to show that lung cancer cells grow in response to estrogen and that stopping or slowing the spread of the disease may be dependent on blocking the action of estrogen," said Jill Siegfried, Ph.D., professor, department of pharmacology and co-leader, Lung and Thoracic Malignancies Program, University of Pittsburgh Cancer Institute. "In fact, in previous studies, we have observed that lung tumor cells contain estrogen receptors at levels comparable to breast cancer cells." A receptor is a structure on the surface of a cell that selectively receives and binds substances.

In the first study, Laura Stabile, Ph.D., instructor in the department of pharmacology at the University of Pittsburgh, and colleagues examined methods to block the action of estrogen in human lung tumors grafted in mice. They compared the effect of blocking the estrogen receptor (ER) pathway alone to blocking it in combination with another receptor pathway – the epidermal growth factor receptor (EGFR). The investigators combined an agent approved for inhibiting the EGFR pathway, gefitinib (Iressa®), with an anti-estrogen agent, fulvestrant (Faslodex®) – a treatment commonly used to manage breast cancer in women with ER positive tumors, but not yet approved for clinical lung cancer treatment. They found that the combined treatment resulted in a tumor volume decrease of 59 percent, compared to a 49 percent decrease for gefitinib treatment alone and a 32 percent decrease for fulvestrant treatment alone. They also found that lung tumors in the combined treatment group were comprised mainly of dead and dying cells, while the number of these cells in the single treatment groups was significantly lower. The study suggests that an interaction between treatments that target both ER and EGFR may enhance the anti-tumor effects of therapy over the use of each agent alone. A pilot clinical trial is already underway testing the combination therapy in women with advanced lung cancer.

"Evidence from our study confirms what has been described for breast cancer – that blocking the estrogen receptor and the epidermal growth factor receptor pathways together is more effective," said Dr. Stabile.

In the second study, Pamela Hershberger, Ph.D., assistant professor in the department of pharmacology at the University of Pittsburgh, examined the effect of estrogen on the expression of genes in lung cancer cells. Using gene arrays, Dr. Hershberger and colleagues reported that some of the same growth genes induced by estrogen in breast cancer also are regulated by estrogen in lung cancer. In addition, the same estrogen inhibitor, fulvestrant, that was active against lung cancer in Dr. Stabile’s study also blocked the ability of estrogen to regulate lung cancer cell gene expression. Dr. Hershberger’s study further showed that other proteins needed for ER to act in breast cancer are found in lung cancer cells.

"Both of these studies clearly suggest that lung cancer cells respond to estrogen and that improving overall patient survival may be contingent upon identifying therapies that target specific pathways and put a halt to estrogen signaling," said Dr. Siegfried.

The studies were funded by a Specialized Program of Research Excellence (SPORE) award in lung cancer from the National Cancer Institute to the University of Pittsburgh Cancer Institute.

Co-investigators on the first study include Jennifer S. Lyker, Christopher T. Gubish, Weiping Zhang, Ph.D., Jennifer R. Grandis, M.D., and Dr. Siegfried. Co-investigators on the second study include Mark Nichols, Ph.D., A. Cecilia Vasquez, Beatriz Kanterewicz, Stephanie Land, Ph.D., and Dr. Siegfried.

Clare Collins | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>