Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HHMI Professor and 138 Undergraduates Identify Essential Genes that Function in Eye Formation

15.02.2005


A Howard Hughes Medical Institute (HHMI) professor and 138 of his undergraduates have co-authored a paper that provides the first genome-wide estimate of vital genes that are also essential for eye development of the common fruit fly, Drosophila melanogaster. The undergraduates are students in a unique biology class taught by HHMI professor Utpal Banerjee at the University of California, Los Angeles.



Banerjee and his students identified 501 essential genes responsible for processes such as repair, cell death, and cell replication in the fruit fly’s developing eye. They report the results of their research and the impact of their research-based learning project in the February 2005 issue of PLoS (Public Library of Science) Biology.

“It won’t be easy to find a paper with 138 undergraduate authors,” said Banerjee, one of 20 HHMI professors who received $1 million grants in 2002 to improve undergraduate biology education. “In fact, this could easily be the first paper ever published with that many undergraduate authors that has serious science in it.”


HHMI professors are recognized research scientists on the faculty of research universities who want to bring the excitement of scientific discovery into the undergraduate classroom. A new competition for HHMI professorships just opened, with 100 research universities invited to nominate scientist-educators and up to 20 new professors to be named in 2006.

The course, created and taught by Banerjee and his group of “teaching postdocs,” Jiong Chen, Allison Milchanowski, and Gerald Call at UCLA, melds education and professional research in functional genomics. The class is modeled on the process of scientific research, a search for new knowledge and exploration of previously uncharted territory. It includes lectures on background material, a computer lab to teach students to analyze the genetic effects of crosses or mating, and a wet lab in which the student researchers actually cross-breed flies.

As a mid-term exam, each student writes an NIH-style grant proposal for original research. The final is a scientific paper that summarizes the research findings.

Innovative undergraduate courses such as this, bringing education and research closer together, are the kind of transformation of the undergraduate science curriculum that HHMI was seeking when it established its professors program.

Banerjee gave the students a research problem that confronts geneticists who want to understand how a mutation affects an organ system, in this case, the eye, which is Banerjee’s research focus. “The only way a geneticist can ask that question is to mutate that gene and see what happens to the eye,” Banerjee explained. “The problem is, if you mutate that gene, the fly is dead as an embryo. What has to be done, he said, is to “make the eye mutant without making the rest of the fly mutant.”

The work began with flies that are heterozygous for a lethal mutation. In other words, they have only one genetic copy of the mutant gene. The goal was to create flies that have the mutation in their eye cells but not throughout the organism and so, survive.

Achieving that goal required what Gerald Call, a postdoctoral fellow who works with Banerjee, called a “genetic trick” called mitotic recombination, in which chromosomes switch segments during cell division. This runs completely contrary to what the students learned in high school biology, said Banerjee. Recombination normally occurs when organisms make sperm and eggs but does not occur when an organism’s other cells divide, the process of mitosis. What makes mitotic recombination possible in Banerjee’s flies is the presence of flippase, an enzyme genetically engineered into the flies that is expressed only in the eye.

Through a series of five crosses or matings of successive generations of flies, the students created flies with homozygous lethal mutations in the eye, independently marked by eye color.

The use of flippase for mitotic recombination is a standard technique, used by Drosophila geneticists to study the impact of mutations. The real achievement of the class, Banerjee said, was using the method to make homozygous mutations in the eye of all the lethal mutations available and creating a database describing the phenotypes or expressions of the mutations. The venture also created stocks that other researchers can use to determine the function of these genes in other tissues.

“None of us knew what was going to happen,” said Joy Wu, a senior now applying to graduate programs in neuroscience. “It put us all on the same playing field.” Added third-year student Albert Cespedes, “This course offered me a chance to do real research, an opportunity I never expected to have as an undergraduate.”

Wu and Cespedes said the course has changed their career plans. “It’s pretty much shaped my future by reinforcing my interest in genetics and development,” said Wu. Cespedes, who plans to go to medical school, now is considering doing research too. “It never even dawned on me that research was an option until I took this course,” he said.

Banerjee said the course embodies what happens to practicing scientists as they work, making connections between ideas and results. “It’s totally amazing how little of that is imparted in some undergraduate classrooms,” he observed.

Jennifer Donovan | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>