Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Test could improve detection of prion disease in humans

15.02.2005


A highly sensitive post-mortem test could help scientists more accurately determine if a person died of Creutzfeldt-Jakob disease (CJD), a human neurological disorder caused by the same class of infectious proteins that trigger mad cow disease, according to a new study supported in part by the National Institutes of Health (NIH). The finding opens the possibility that such testing might be refined in the future so it can be used to detect prion disease in living people and animals before the onset of symptoms.



The test, called conformation-dependent immunoassay (CDI), was originally developed to detect various forms of disease-causing proteins called prions in cows, sheep, deer and other animals. In the new study, researchers led by Jiri Safar, M.D., Bruce Miller, M.D., Michael Geschwind, M.D., Stephen DeArmond, M.D., and Nobel Laureate Stanley B. Prusiner, M.D., of the University of California, San Francisco, found that CDI not only identifies prions in human brain tissue but is faster and far more precise than the standard immunological detection methods, which only detect a small fraction of the infectious prions that may be in the brain.

The finding appears in the March 1, 2005 issue of the Proceedings of the National Academy of Sciences, www.pnas.org. Two components of the NIH, the National Institute of Neurological Disorders and Stroke (NINDS)* and the National Institute on Aging (NIA), supported the study. Additional support was provided by the John Douglas French Foundation for Alzheimer’s research, the McBean Foundation, and the Alzheimer’s Disease Research Center of California.


"The findings of this NIH-funded research are an important step forward for the detection of prions," said Michael Nunn, Ph.D., NINDS program director for prion research. "It has been very difficult to generate diagnostic tests in this area and these results are a significant improvement for the diagnosis of CJD in living people."

In the study, Prusiner and his colleagues extracted brain tissue from 28 people who had died of CJD. They tested these samples using CDI, which uses highly specific antibodies that bind to all disease-causing prions in the brain. They also used immunohistochemistry (IHC) to measure only the prion proteins that are resistant to an enzyme called protease. Protease-resistant prions are abnormal and usually infectious, meaning they can cause CJD and other neurodegenerative diseases. CDI detected abnormal prions in all of the sampled brain regions. In contrast, the researchers found that IHC detected abnormal prions in less than 25 percent of the sampled brain regions. The findings, according to the researchers, suggest that CDI could be used to establish or rule out the diagnosis of CJD with greater accuracy than IHC, particularly when a small number of samples are available. Prusiner and colleagues are exploring the possibility of using CDI in living tissue, like blood or muscle, to detect and diagnose prion diseases, such as CJD or bovine spongiform encephalopathy (BSE, mad cow disease) while people or animals are still alive.

"This research not only is an important advance for the detection and diagnosis of prion diseases, but, with the identification of protease-sensitive infectious prions, will lead to a better understanding of the underlying disease processes," said Andrew Monjan, Ph.D., Chief of the NIA’s Neurobiology of Aging Branch.

Prusiner received the 1997 Nobel Prize in physiology or medicine for his discovery of prions. Unlike viruses, bacteria, fungi, and parasites, prions contain no DNA or RNA. Instead, prions are an altered type of protein normally found within cells in humans and other organisms. These abnormal prion proteins appear to convert other, normal prions to an abnormal shape. Many scientists now believe this conversion process leads to several dementing diseases in humans, including CJD. Similar diseases in animals include bovine spongiform encephalopathy ("mad cow" disease) in cattle and scrapie in sheep. Abnormal, misfolded proteins contribute to other age-related neurological diseases such as Alzheimer’s and Parkinson’s diseases. According to Prusiner and his colleagues, CDI testing might eventually have a role in the diagnosis of other neurodegenerative diseases, including Alzheimer’s and Parkinson’s, in which normally shaped proteins are structurally altered.

Doug Dollemore | EurekAlert!
Further information:
http://www.nia.nih.gov

More articles from Life Sciences:

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

nachricht Party discipline for jumping genes
22.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>