Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Test could improve detection of prion disease in humans

15.02.2005


A highly sensitive post-mortem test could help scientists more accurately determine if a person died of Creutzfeldt-Jakob disease (CJD), a human neurological disorder caused by the same class of infectious proteins that trigger mad cow disease, according to a new study supported in part by the National Institutes of Health (NIH). The finding opens the possibility that such testing might be refined in the future so it can be used to detect prion disease in living people and animals before the onset of symptoms.



The test, called conformation-dependent immunoassay (CDI), was originally developed to detect various forms of disease-causing proteins called prions in cows, sheep, deer and other animals. In the new study, researchers led by Jiri Safar, M.D., Bruce Miller, M.D., Michael Geschwind, M.D., Stephen DeArmond, M.D., and Nobel Laureate Stanley B. Prusiner, M.D., of the University of California, San Francisco, found that CDI not only identifies prions in human brain tissue but is faster and far more precise than the standard immunological detection methods, which only detect a small fraction of the infectious prions that may be in the brain.

The finding appears in the March 1, 2005 issue of the Proceedings of the National Academy of Sciences, www.pnas.org. Two components of the NIH, the National Institute of Neurological Disorders and Stroke (NINDS)* and the National Institute on Aging (NIA), supported the study. Additional support was provided by the John Douglas French Foundation for Alzheimer’s research, the McBean Foundation, and the Alzheimer’s Disease Research Center of California.


"The findings of this NIH-funded research are an important step forward for the detection of prions," said Michael Nunn, Ph.D., NINDS program director for prion research. "It has been very difficult to generate diagnostic tests in this area and these results are a significant improvement for the diagnosis of CJD in living people."

In the study, Prusiner and his colleagues extracted brain tissue from 28 people who had died of CJD. They tested these samples using CDI, which uses highly specific antibodies that bind to all disease-causing prions in the brain. They also used immunohistochemistry (IHC) to measure only the prion proteins that are resistant to an enzyme called protease. Protease-resistant prions are abnormal and usually infectious, meaning they can cause CJD and other neurodegenerative diseases. CDI detected abnormal prions in all of the sampled brain regions. In contrast, the researchers found that IHC detected abnormal prions in less than 25 percent of the sampled brain regions. The findings, according to the researchers, suggest that CDI could be used to establish or rule out the diagnosis of CJD with greater accuracy than IHC, particularly when a small number of samples are available. Prusiner and colleagues are exploring the possibility of using CDI in living tissue, like blood or muscle, to detect and diagnose prion diseases, such as CJD or bovine spongiform encephalopathy (BSE, mad cow disease) while people or animals are still alive.

"This research not only is an important advance for the detection and diagnosis of prion diseases, but, with the identification of protease-sensitive infectious prions, will lead to a better understanding of the underlying disease processes," said Andrew Monjan, Ph.D., Chief of the NIA’s Neurobiology of Aging Branch.

Prusiner received the 1997 Nobel Prize in physiology or medicine for his discovery of prions. Unlike viruses, bacteria, fungi, and parasites, prions contain no DNA or RNA. Instead, prions are an altered type of protein normally found within cells in humans and other organisms. These abnormal prion proteins appear to convert other, normal prions to an abnormal shape. Many scientists now believe this conversion process leads to several dementing diseases in humans, including CJD. Similar diseases in animals include bovine spongiform encephalopathy ("mad cow" disease) in cattle and scrapie in sheep. Abnormal, misfolded proteins contribute to other age-related neurological diseases such as Alzheimer’s and Parkinson’s diseases. According to Prusiner and his colleagues, CDI testing might eventually have a role in the diagnosis of other neurodegenerative diseases, including Alzheimer’s and Parkinson’s, in which normally shaped proteins are structurally altered.

Doug Dollemore | EurekAlert!
Further information:
http://www.nia.nih.gov

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>