Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New highly active agents against sandfly fever

15.02.2005


Leishmaniases and trypanosomiases are parasitic diseases which kill several thousands of people per year, mainly in developing countries. The effectiveness of existing treatments is being called into question owing to their toxicity and the emergence of resistance. A family of alkaloids, the quinolines, could be a worthwhile new therapeutic line to follow. Following on from the discovery of anti-leishmaniasis activity in natural quinolines, a research team of IRD, Pasteur Institute and CNRS scientists(1) carried out investigations on this chemical family. Some of the many quinolines synthesized in the laboratory have antiparasitic properties, especially against leishmaniases, others have antiretroviral activity. Biological trials in the mouse have already confirmed their properties and therapeutic efficacy.



Parasitic diseases, especially leishmaniases and trypanosomiases, kill hundreds of thousands of people every year in the world, mainly in the countries of the South. The most severe form of leishmaniosis (kala-azar, the visceral form), induced by Leishmania donovani and L. infantum, affects about 500 000 people per year and proves fatal if no treatment is given.

Although drugs do exist for treating these diseases, they are not always effective, owing to the appearance of resistant parasites and to the toxicity of the products. Moreover, administration of the available treatments against leishmaniases is mainly by injection, which means that patients have to go to hospital. Most people infected live in areas either far from health-care facilities or completely devoid of them. Research for new substances with potential as therapeutic agents is consequently necessary.


IRD researchers conducted ethno-pharmacological studies in line with this search, in South America. These scientists, working with researchers from the CNRS, the University of Paris-Sud and the Institut Pasteur (1), have thus discovered and studied alkaloids of the chemical family of the quinolines, doted with antiparasitic properties. The quinolines, obtained by chemical synthesis, are analogues of quinolines initially isolated from a Bolivian plant, Galipea longiflora (Rutaceae). Experiments conducted on mice infected by visceral leishmaniasis showed that oral administration of these quinolines was effective for treating this severe form of the disease (2).

The general chemical structure of quinolines comprises two rings (the quinoleic nucleus), one aromatic and the other bearing nitrogen (pyridinic) on to which variable substitution groups can bind depending on their character and position. In order to select the most active molecule, the least toxic and the easiest to synthesize, about 100 substituted quinolines were prepared and tested in vitro on different parasites, particularly those responsible for the cutaneous and visceral forms of leishmaniasis, then on two retroviruses, HIV (responsible for the Aids pandemic) and HTLV-1 (human T-cell leukaemia virus). HTLV-1, which was the first retrovirus discovered (1980), currently affects 15 to 20 million people in the world, essentially in South-West Japan, the Caribbean, Latin America and tropical Africa. It can cause a specific form of leukaemia and a slowly developing degradation of the nervous system (tropical spastic paraparesia).

The activity of these substances is closely linked to their chemical structure, and especially to the length of the substitution group (number of carbon atoms) located in position 2 on the quinoleic nucleus. Generally, the most active quinolines are those which carry a three-carbon-atom branch and an unsaturated (alkenyl) bond.

Among these compounds, some proved especially active against parasites of the genus Leishmania, showing an efficacy equal to or higher than that of the reference drug for treating leishmaniases, glucantime®. Experiments run on mice confirmed that oral administration of these quinolines was effective and that toxicity was low for this animal. The adoption of this administration route would simplify treatment of patients in regions devoid of hospital infrastructures. Three of these compounds were eventually chosen for their biological activity, their innocuousness and their ease of synthesis. They are currently the focus of investigations on their action mechanism, their behaviour in the human organism and their toxicity.

Among the quinolines active against leishmaniases, some were also able to block, in vitro, the replication of the retrovirus HIV-1, without manifesting any toxicity against their host cells. Others were revealed to be active against HTLV-1, one being capable of inhibiting retrovirus replication, at very small doses by reducing the viral load by 76% (3).

The quinolines consequently are compounds worthy of investigation in line with the search for new treatments for infections that are insufficiently combated by existing medicines. Research work and development of these compounds active against leishmaniases are planned, in partnership with Brazil, with the particular aim of perfecting their production at industrial scale. Furthermore, assessment of their antiretroviral activity (HTLV-1) is being continued in a joint scientific project set up between the scientists and a research laboratory of the FIOCRUZ (Fondation Oswaldo Cruz, Salvador).

Hélène Deval | EurekAlert!
Further information:
http://www.ird.fr

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>