Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New highly active agents against sandfly fever

15.02.2005


Leishmaniases and trypanosomiases are parasitic diseases which kill several thousands of people per year, mainly in developing countries. The effectiveness of existing treatments is being called into question owing to their toxicity and the emergence of resistance. A family of alkaloids, the quinolines, could be a worthwhile new therapeutic line to follow. Following on from the discovery of anti-leishmaniasis activity in natural quinolines, a research team of IRD, Pasteur Institute and CNRS scientists(1) carried out investigations on this chemical family. Some of the many quinolines synthesized in the laboratory have antiparasitic properties, especially against leishmaniases, others have antiretroviral activity. Biological trials in the mouse have already confirmed their properties and therapeutic efficacy.



Parasitic diseases, especially leishmaniases and trypanosomiases, kill hundreds of thousands of people every year in the world, mainly in the countries of the South. The most severe form of leishmaniosis (kala-azar, the visceral form), induced by Leishmania donovani and L. infantum, affects about 500 000 people per year and proves fatal if no treatment is given.

Although drugs do exist for treating these diseases, they are not always effective, owing to the appearance of resistant parasites and to the toxicity of the products. Moreover, administration of the available treatments against leishmaniases is mainly by injection, which means that patients have to go to hospital. Most people infected live in areas either far from health-care facilities or completely devoid of them. Research for new substances with potential as therapeutic agents is consequently necessary.


IRD researchers conducted ethno-pharmacological studies in line with this search, in South America. These scientists, working with researchers from the CNRS, the University of Paris-Sud and the Institut Pasteur (1), have thus discovered and studied alkaloids of the chemical family of the quinolines, doted with antiparasitic properties. The quinolines, obtained by chemical synthesis, are analogues of quinolines initially isolated from a Bolivian plant, Galipea longiflora (Rutaceae). Experiments conducted on mice infected by visceral leishmaniasis showed that oral administration of these quinolines was effective for treating this severe form of the disease (2).

The general chemical structure of quinolines comprises two rings (the quinoleic nucleus), one aromatic and the other bearing nitrogen (pyridinic) on to which variable substitution groups can bind depending on their character and position. In order to select the most active molecule, the least toxic and the easiest to synthesize, about 100 substituted quinolines were prepared and tested in vitro on different parasites, particularly those responsible for the cutaneous and visceral forms of leishmaniasis, then on two retroviruses, HIV (responsible for the Aids pandemic) and HTLV-1 (human T-cell leukaemia virus). HTLV-1, which was the first retrovirus discovered (1980), currently affects 15 to 20 million people in the world, essentially in South-West Japan, the Caribbean, Latin America and tropical Africa. It can cause a specific form of leukaemia and a slowly developing degradation of the nervous system (tropical spastic paraparesia).

The activity of these substances is closely linked to their chemical structure, and especially to the length of the substitution group (number of carbon atoms) located in position 2 on the quinoleic nucleus. Generally, the most active quinolines are those which carry a three-carbon-atom branch and an unsaturated (alkenyl) bond.

Among these compounds, some proved especially active against parasites of the genus Leishmania, showing an efficacy equal to or higher than that of the reference drug for treating leishmaniases, glucantime®. Experiments run on mice confirmed that oral administration of these quinolines was effective and that toxicity was low for this animal. The adoption of this administration route would simplify treatment of patients in regions devoid of hospital infrastructures. Three of these compounds were eventually chosen for their biological activity, their innocuousness and their ease of synthesis. They are currently the focus of investigations on their action mechanism, their behaviour in the human organism and their toxicity.

Among the quinolines active against leishmaniases, some were also able to block, in vitro, the replication of the retrovirus HIV-1, without manifesting any toxicity against their host cells. Others were revealed to be active against HTLV-1, one being capable of inhibiting retrovirus replication, at very small doses by reducing the viral load by 76% (3).

The quinolines consequently are compounds worthy of investigation in line with the search for new treatments for infections that are insufficiently combated by existing medicines. Research work and development of these compounds active against leishmaniases are planned, in partnership with Brazil, with the particular aim of perfecting their production at industrial scale. Furthermore, assessment of their antiretroviral activity (HTLV-1) is being continued in a joint scientific project set up between the scientists and a research laboratory of the FIOCRUZ (Fondation Oswaldo Cruz, Salvador).

Hélène Deval | EurekAlert!
Further information:
http://www.ird.fr

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>