Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

COX-2 product offers good and bad news in ’test tube’ strokes

15.02.2005


Paradox suggests reasons why COX-2 inhibitors hurt and help.



Laboratory studies at Johns Hopkins have revealed that certain products of the enzymes COX-1 and COX-2 can both protect and damage the brain. The findings, published in the February 2005 issue of the Journal of Neurochemistry, offer tantalizing clues to why drugs like Vioxx and Celebrex, which block COX-2, can ease arthritis but potentially harm the heart and brain.

Katrin Andreasson, M.D., an assistant professor in the neurology and neuroscience departments at Hopkins, and lead author of the study, explains that the recent discoveries of cardiovascular complications with long-term use of some COX-2 inhibitors are thought to be due to blocking effects of "good" prostaglandins, which are the downstream products of COX activity, potentially leading to heart attacks and strokes. "Defining which prostaglandin pathways are good and which promote disease would help to design more specific therapeutics," she says.


In their latest laboratory studies, the Hopkins scientists discovered that the prostaglandin PGD2 has a protective or harmful effect in the brain depending on where it docks on a brain cell’s surface. After brain cells experience the laboratory equivalent of a stroke, PDG2 can protect them from being killed if it binds to one docking point, or receptor, on the cells’ surface, but causes them to die in greater numbers if it binds to a second receptor instead, the researchers report. Prostaglandins are involved in a wide variety of bodily activities including relaxation and contraction of muscles and blood vessels, control of blood pressure and inflammation.

"PGD2 is the most-produced prostaglandin in the brain," says Andreasson. "It trumps all of the rest. So we theorized that high levels are protective. But it was a surprise that it was so effective at protecting neurons."

Because the Hopkins team found that PGD2’s positive effects generally outweigh its negative ones, the group speculates that PGD2 may provide a potential target for medicines to combat conditions involving brain damage, including stroke, Parkinson’s disease and Alzheimer’s disease.

In these neurologic diseases, nerve cell death is thought to be carried out in part by a huge release of glutamate, an important signaling molecule in the brain. In their experiments with brain cells and brain tissue from rats, the Hopkins researchers used glutamate to simulate the aftereffects of a stroke. After strokes and other injuries to the brain, levels of glutamate rise, triggering a number of chemical reactions, including an increase in COX-2 production and prostaglandin production. Increased COX-2 activity then leads to further neuron death.

The new findings come in the wake of two previous studies Andreasson has worked on, each finding unexpected protective roles for another prostaglandin produced by COX-2. In one, a different prostaglandin (PGE2) prevented brain cells from dying after a stroke. In the other, mice lacking a docking point for the PGE2 experienced strokes far more severe than normal animals.

Andreasson is now trying to determine if these prostaglandins have a similar protective effect in mouse models of Lou Gehrig’s disease, in which excessive glutamate is believed to damage neurons, and will begin work to see if the beneficial side of PGD2 activity can outweigh its toxic activity.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>