Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

COX-2 product offers good and bad news in ’test tube’ strokes

15.02.2005


Paradox suggests reasons why COX-2 inhibitors hurt and help.



Laboratory studies at Johns Hopkins have revealed that certain products of the enzymes COX-1 and COX-2 can both protect and damage the brain. The findings, published in the February 2005 issue of the Journal of Neurochemistry, offer tantalizing clues to why drugs like Vioxx and Celebrex, which block COX-2, can ease arthritis but potentially harm the heart and brain.

Katrin Andreasson, M.D., an assistant professor in the neurology and neuroscience departments at Hopkins, and lead author of the study, explains that the recent discoveries of cardiovascular complications with long-term use of some COX-2 inhibitors are thought to be due to blocking effects of "good" prostaglandins, which are the downstream products of COX activity, potentially leading to heart attacks and strokes. "Defining which prostaglandin pathways are good and which promote disease would help to design more specific therapeutics," she says.


In their latest laboratory studies, the Hopkins scientists discovered that the prostaglandin PGD2 has a protective or harmful effect in the brain depending on where it docks on a brain cell’s surface. After brain cells experience the laboratory equivalent of a stroke, PDG2 can protect them from being killed if it binds to one docking point, or receptor, on the cells’ surface, but causes them to die in greater numbers if it binds to a second receptor instead, the researchers report. Prostaglandins are involved in a wide variety of bodily activities including relaxation and contraction of muscles and blood vessels, control of blood pressure and inflammation.

"PGD2 is the most-produced prostaglandin in the brain," says Andreasson. "It trumps all of the rest. So we theorized that high levels are protective. But it was a surprise that it was so effective at protecting neurons."

Because the Hopkins team found that PGD2’s positive effects generally outweigh its negative ones, the group speculates that PGD2 may provide a potential target for medicines to combat conditions involving brain damage, including stroke, Parkinson’s disease and Alzheimer’s disease.

In these neurologic diseases, nerve cell death is thought to be carried out in part by a huge release of glutamate, an important signaling molecule in the brain. In their experiments with brain cells and brain tissue from rats, the Hopkins researchers used glutamate to simulate the aftereffects of a stroke. After strokes and other injuries to the brain, levels of glutamate rise, triggering a number of chemical reactions, including an increase in COX-2 production and prostaglandin production. Increased COX-2 activity then leads to further neuron death.

The new findings come in the wake of two previous studies Andreasson has worked on, each finding unexpected protective roles for another prostaglandin produced by COX-2. In one, a different prostaglandin (PGE2) prevented brain cells from dying after a stroke. In the other, mice lacking a docking point for the PGE2 experienced strokes far more severe than normal animals.

Andreasson is now trying to determine if these prostaglandins have a similar protective effect in mouse models of Lou Gehrig’s disease, in which excessive glutamate is believed to damage neurons, and will begin work to see if the beneficial side of PGD2 activity can outweigh its toxic activity.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>