Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

COX-2 product offers good and bad news in ’test tube’ strokes

15.02.2005


Paradox suggests reasons why COX-2 inhibitors hurt and help.



Laboratory studies at Johns Hopkins have revealed that certain products of the enzymes COX-1 and COX-2 can both protect and damage the brain. The findings, published in the February 2005 issue of the Journal of Neurochemistry, offer tantalizing clues to why drugs like Vioxx and Celebrex, which block COX-2, can ease arthritis but potentially harm the heart and brain.

Katrin Andreasson, M.D., an assistant professor in the neurology and neuroscience departments at Hopkins, and lead author of the study, explains that the recent discoveries of cardiovascular complications with long-term use of some COX-2 inhibitors are thought to be due to blocking effects of "good" prostaglandins, which are the downstream products of COX activity, potentially leading to heart attacks and strokes. "Defining which prostaglandin pathways are good and which promote disease would help to design more specific therapeutics," she says.


In their latest laboratory studies, the Hopkins scientists discovered that the prostaglandin PGD2 has a protective or harmful effect in the brain depending on where it docks on a brain cell’s surface. After brain cells experience the laboratory equivalent of a stroke, PDG2 can protect them from being killed if it binds to one docking point, or receptor, on the cells’ surface, but causes them to die in greater numbers if it binds to a second receptor instead, the researchers report. Prostaglandins are involved in a wide variety of bodily activities including relaxation and contraction of muscles and blood vessels, control of blood pressure and inflammation.

"PGD2 is the most-produced prostaglandin in the brain," says Andreasson. "It trumps all of the rest. So we theorized that high levels are protective. But it was a surprise that it was so effective at protecting neurons."

Because the Hopkins team found that PGD2’s positive effects generally outweigh its negative ones, the group speculates that PGD2 may provide a potential target for medicines to combat conditions involving brain damage, including stroke, Parkinson’s disease and Alzheimer’s disease.

In these neurologic diseases, nerve cell death is thought to be carried out in part by a huge release of glutamate, an important signaling molecule in the brain. In their experiments with brain cells and brain tissue from rats, the Hopkins researchers used glutamate to simulate the aftereffects of a stroke. After strokes and other injuries to the brain, levels of glutamate rise, triggering a number of chemical reactions, including an increase in COX-2 production and prostaglandin production. Increased COX-2 activity then leads to further neuron death.

The new findings come in the wake of two previous studies Andreasson has worked on, each finding unexpected protective roles for another prostaglandin produced by COX-2. In one, a different prostaglandin (PGE2) prevented brain cells from dying after a stroke. In the other, mice lacking a docking point for the PGE2 experienced strokes far more severe than normal animals.

Andreasson is now trying to determine if these prostaglandins have a similar protective effect in mouse models of Lou Gehrig’s disease, in which excessive glutamate is believed to damage neurons, and will begin work to see if the beneficial side of PGD2 activity can outweigh its toxic activity.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>