Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

COX-2 product offers good and bad news in ’test tube’ strokes

15.02.2005


Paradox suggests reasons why COX-2 inhibitors hurt and help.



Laboratory studies at Johns Hopkins have revealed that certain products of the enzymes COX-1 and COX-2 can both protect and damage the brain. The findings, published in the February 2005 issue of the Journal of Neurochemistry, offer tantalizing clues to why drugs like Vioxx and Celebrex, which block COX-2, can ease arthritis but potentially harm the heart and brain.

Katrin Andreasson, M.D., an assistant professor in the neurology and neuroscience departments at Hopkins, and lead author of the study, explains that the recent discoveries of cardiovascular complications with long-term use of some COX-2 inhibitors are thought to be due to blocking effects of "good" prostaglandins, which are the downstream products of COX activity, potentially leading to heart attacks and strokes. "Defining which prostaglandin pathways are good and which promote disease would help to design more specific therapeutics," she says.


In their latest laboratory studies, the Hopkins scientists discovered that the prostaglandin PGD2 has a protective or harmful effect in the brain depending on where it docks on a brain cell’s surface. After brain cells experience the laboratory equivalent of a stroke, PDG2 can protect them from being killed if it binds to one docking point, or receptor, on the cells’ surface, but causes them to die in greater numbers if it binds to a second receptor instead, the researchers report. Prostaglandins are involved in a wide variety of bodily activities including relaxation and contraction of muscles and blood vessels, control of blood pressure and inflammation.

"PGD2 is the most-produced prostaglandin in the brain," says Andreasson. "It trumps all of the rest. So we theorized that high levels are protective. But it was a surprise that it was so effective at protecting neurons."

Because the Hopkins team found that PGD2’s positive effects generally outweigh its negative ones, the group speculates that PGD2 may provide a potential target for medicines to combat conditions involving brain damage, including stroke, Parkinson’s disease and Alzheimer’s disease.

In these neurologic diseases, nerve cell death is thought to be carried out in part by a huge release of glutamate, an important signaling molecule in the brain. In their experiments with brain cells and brain tissue from rats, the Hopkins researchers used glutamate to simulate the aftereffects of a stroke. After strokes and other injuries to the brain, levels of glutamate rise, triggering a number of chemical reactions, including an increase in COX-2 production and prostaglandin production. Increased COX-2 activity then leads to further neuron death.

The new findings come in the wake of two previous studies Andreasson has worked on, each finding unexpected protective roles for another prostaglandin produced by COX-2. In one, a different prostaglandin (PGE2) prevented brain cells from dying after a stroke. In the other, mice lacking a docking point for the PGE2 experienced strokes far more severe than normal animals.

Andreasson is now trying to determine if these prostaglandins have a similar protective effect in mouse models of Lou Gehrig’s disease, in which excessive glutamate is believed to damage neurons, and will begin work to see if the beneficial side of PGD2 activity can outweigh its toxic activity.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>