Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds new designer drug is potent treatment for chronic myelogenous leukemia

15.02.2005


Hybrid targeted therapy effective in treating Gleevec-resistant disease



Using rational drug design strategies, investigators at Dana-Farber Cancer Institute and Novartis Pharmaceuticals in Basel, Switzerland have created a targeted therapy for chronic myelogenous leukemia (CML) that may ultimately be more effective than Gleevec®, the current frontline treatment. The researchers report in the February issue of Cancer Cell that the new compound, AMN107, is about 20 times more potent than Gleevec and is effective in treating Gleevec-resistant disease in model systems.

"While Gleevec represents a major treatment advance for CML – approximately 95 percent of patients treated with Gleevec achieve remission – there clearly is a need for therapies that produce longer remissions, are active against advanced disease, and can be used when Gleevec loses effectiveness," says Dana-Farber’s James Griffin, MD, senior author of the study. "The goal of this study was to develop a drug that hits the same target on CML cells as Gleevec does, and to hit more of the target."


Gleevec shuts down CML by blocking the function of Bcr-Abl, the abnormal tyrosine kinase protein in the leukemic cells that causes them to grow too quickly. However, it does not bind very tightly to this protein, takes a long time to induce remissions, and patients can develop a resistant type of Bcr-Abl that no longer binds to Gleevec at all.

To circumvent these shortcomings, researchers at Novartis determined the crystal structure of Bcr-Abl, and then constructed compounds that would lock into the receptor more securely than Gleevec. Investigators at Dana-Farber tested the new compounds to measure their effectiveness against CML in laboratory cell cultures and mice with the disease.

The final product was AMN107, a half-new, half-old hybrid. Half of AMN107’s chemical makeup is identical to a portion of Gleevec, the remainder is completely different, explains Griffin, who is also a professor of medicine at Harvard Medical School.

In experiments with laboratory samples of CML cells, AMN107 killed the cells more effectively than Gleevec. In follow-up studies with mice with a human form of CML, AMN107 produced lengthier remissions than Gleevec and triggered remissions in animals in which the disease had become resistant to Gleevec. Side effects in the animals were minimal. "In these pre-clinical tests, the new drug was very impressive," says Griffin. "We’ve been able to expand on what we learned from Gleevec to produce a therapy that, thus far, has a more powerful and enduring impact against CML."

AMN107 has been started in early phase clinical trials at M.D. Anderson Cancer Center, and if it proves safe to administer, will be tested for effectiveness in CML patients at Dana-Farber and other sites. If the drug is effective, the next task will be to determine the optimal way of using it –– whether alone or in combination with Gleevec or as a follow-up to Gleevec. Studies are also under way to learn whether AMN107 is effective against other diseases, such as gastrointestinal stromal tumor (GIST), for which Gleevec has become a reliable treatment. "We’re very encouraged by the results so far," Griffin remarks. "This is an elegant example of how rational drug design –– developing drugs based on a molecular understanding of cell structures and processes –– can be used to attack human diseases."

The findings contribute to a larger Dana-Farber research effort, dubbed the "Kinase Project," which seeks to identify abnormal tyrosine kinases -- enzymes that spark or halt growth -- in cancer cells and test agents known to act against them.

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>