Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell therapy for spinal injury

14.02.2005


Researchers at Karolinska Institutet have shown how the transplantation of stem cells improves recovery from spinal injury. However, a painful condition can also develop, which can be prevented if the stem cells are supplemented with a certain gene that controls their maturing process. The results are important for planning of stem cell therapy trials on patients with spinal injury.



Spinal injury confines some 150 Swedes a year to wheelchairs. The damage cause the loss of movement and sensation below the level of injury. A research team at Karolinska Institutet has now shown using rat models that the introduction of stem cells following such injury is effective, although a double-edged sword: while on the one hand the injection of stem cells into the damaged area of the spine improves motor function (movement) inferior to the injury level, scientists found that the rats developed greater pain sensitivity just superior of it.

In a follow-up study, a special gene, neurogenin-2, was added to the stem cells while they were developing in culture. When stem cells containing this gene were transplanted into the damaged spinal cord, the adverse pain effects failed to appear while the enhancement of motor function improved. Sensory function (feeling) below the injury also clearly improved.


The aggravated sensitivity to pain was thought to be the result of the fact that many stem cells developed into astrocytes, a kind of glial cell that encourages the growth of pain axons in the spinal cord by secreting substances that stimulate neuronal development.

The researchers found that the presence of neurogenin-2, a “transcription factor” that regulates the activity of other genes during the stem cell maturing process, inhibited the development of astrocytes and encouraged the formation of oligodendrocytes, another type of glial cell that forms the fatty myelin sheaths around the axons. The small number of astrocytes that developed from the neurogenin-2-bearing stem cells corresponded to the lack of growth of pain axons. The greater number of oligodendrocytes that were produced by the neurogenin-2-bearing stem cells also corresponded to a greater volume of white substance, i.e. myelin coated nerve fibres, in the damaged area.

With the help of functional Magnetic Resonance Imaging (fMRI), the team, working from KI’s experimental MRI centre, has managed for the first time to demonstrate the return of sensory function following spinal injury. An advantage of the fMRI technique is that it can be used to compare results from animal and human studies if and when new therapies for the treatment of spinal injury can be tested on patients.

Professor Lars Olson | alfa
Further information:
http://info.ki.se/article_en.html?ID=3101
http://www.neuro.ki.se

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>