Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA scientists transform HIV into cancer-seeking missile

14.02.2005


Firefly protein illuminates virus’ hunt of metastasized melanoma cells in live mouse



Camouflaging an impotent AIDS virus in new clothes enables it to hunt down metastasized melanoma cells in living mice, reports a UCLA AIDS Institute study in the Feb. 13 online edition of Nature Medicine. The scientists added the protein that makes fireflies glow to the virus in order to track its journey from the bloodstream to new tumors in the animals’ lungs. "For the past 20 years, gene therapy has been hampered by the lack of a good carrier for therapeutic genes that can travel through the blood and aim itself at a precise location, thereby minimizing harmful side effects," explained Irvin S.Y. Chen, Ph.D., director of the UCLA AIDS Institute. "Our approach proves that it is possible to develop an effective carrier and reprogram it to target specific cells in the body."

The UCLA team employed a two-step approach to transform HIV into a cancer-seeking machine. First, the scientists used a version of HIV from which the viral pieces that cause AIDS had been removed. This allowed the virus to infect cells and spread throughout the body without provoking disease. "The disarmed AIDS virus acts like a Trojan horse – transporting therapeutic agents to a targeted part of the body, such as the lungs, where tumors often spread," said Chen, a professor of medicine, microbiology, immunology and molecular genetics and a member of the Jonsson Comprehensive Cancer Center at the David Geffen School of Medicine at UCLA.


Second, the scientists stripped off HIV’s viral coat and redressed it in the outer suit of the Sindbis virus, which normally infects insects and birds. By altering the Sindbis coat, they reprogrammed the AIDS virus, which ordinarily infects T-cells, to hunt down and attach to P-glycoproteins -- molecules located on the surface of many cancer cells. The UCLA team is the first to prove that modified HIV will target and bind with P-glycoproteins. "P-glycoproteins cause big problems by making the cell resistant to chemotherapy," said Chen. "They act like soccer goalies and punt therapeutic drugs out of the cancer cell. This prevents the drug from taking effect and allows the tumor to continue growing unchecked."

In order to track the carrier’s journey, the scientists added luciferase – the protein that makes fireflies glow – to the AIDS virus. They injected the camouflaged HIV into a vein in the mouse’s tail and used a special optical camera to watch the carrier’s movement. "The virus traveled through the animal’s bloodstream and homed straight to the cancer cells in the lungs, where the melanoma had migrated," said Chen.

When the researchers held the mouse under the camera, the luciferase illuminated the cancer cells, which glowed through the animal’s bones, muscles and fur. The method is non-invasive and does not cause pain or harm to the animal.

Though excited at proving that HIV can be used to target cancer cells, Chen emphasizes that the carrier must be further enhanced for safety and specificity before it can be tested as a gene-therapy method in humans. "Our next step will be to test whether we can direct therapeutic genes to the precise location where cancer cells reside," Chen said. "This approach offers many potential applications for controlling cancer and other diseases." "We may be able to boost immune-system surveillance at tumor sites, identify cancer cells’ exact location and kill them before they cause damage," he added. "Beyond cancer, it may be possible to correct acquired and genetic diseases where the mutations exert their harmful effects on the body."

Melanoma is a serious form of skin cancer. According to the American Cancer Society, an estimated 59,580 Americans will be diagnosed with melanoma in 2005, and about 7,770 people will die of the disease.

Elaine Schmidt | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>