Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UCF stem cell research may hold promise for treating Alzheimer’s disease


A compound may improve the chances that stem cells transplanted from a patient’s bone marrow will help take over brain functions

A compound similar to the components of DNA may improve the chances that stem cells transplanted from a patient’s bone marrow to the brain will take over the functions of damaged cells and help treat Alzheimer’s disease and other neurological illnesses.
A research team led by University of Central Florida professor Kiminobu Sugaya found that treating bone marrow cells in laboratory cultures with bromodeoxyuridine, a compound that becomes part of DNA, made adult human stem cells more likely to develop as brain cells after they were implanted in adult rat brains. The findings will be included in the next issue of the Restorative Neurology and Neuroscience journal, which is scheduled to be published in late February.

Sugaya and his colleagues at UCF’s Burnett College of Biomedical Sciences hope to eventually show that stem cells transplanted from a patient’s blood or bone marrow will be an effective treatment for Alzheimer’s and other neurological diseases because they can replace cells that die from those ailments. The researchers are working with a $1.4 million grant from the National Institutes of Health.

"By using a patient’s own stem cells instead of embryonic stem cells, we’re able to avoid the ethical concerns many people have about stem cell research," Sugaya said. "We also don’t have to worry about the immune system rejecting the new cells."

Stem cells hold promise for the treatment of many diseases because they are capable of dividing endlessly and developing into many different types of cells in the human body. The researchers at UCF and the University of Illinois at Chicago, where Sugaya taught before moving to UCF last summer, are the first to demonstrate improved memory in adult animals after transplanting neural stem cells into their brains.

Sugaya and his colleagues used bromodeoxyuridine to improve the chances that the stem cells taken from adults’ bone marrow would have the potential to develop more efficiently into neural cells.

In the same experiments, they reported successes in taking stem cells from bone marrow and getting them to become retinal cells after they were implanted in rats. Improving the chances of implanted cells functioning as retinal cells is an encouraging sign for the treatment of glaucoma and other diseases that cause patients to lose their vision.

Sugaya hopes further studies at UCF will lead to researchers gaining more control over ensuring that cells develop properly as brain cells once implanted in brains and as retinal cells when implanted in eyes. His research group also is testing the ability of stem cells taken from adults’ bone marrow to become other types of cells, such as heart muscle cells, after they have been treated with bromodeoxyuridine. Many more tests using cell cultures and animals need to be conducted before any trials on humans can be done.

Sugaya’s colleagues include Jose Pulido, formerly a professor at the University of Illinois at Chicago’s School of Ophthalmology and Visual Sciences, and Sugaya’s wife, Ikuko, a research associate in his UCF lab.

Technologies from the research project are licensed to NewNeural LLC, a company funded by Sugaya and two other founders. NewNeural works to develop and commercialize products that improve the brain’s ability to repair and replace damaged brain cells.

Chad Binette | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>