Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCF stem cell research may hold promise for treating Alzheimer’s disease

14.02.2005


A compound may improve the chances that stem cells transplanted from a patient’s bone marrow will help take over brain functions



A compound similar to the components of DNA may improve the chances that stem cells transplanted from a patient’s bone marrow to the brain will take over the functions of damaged cells and help treat Alzheimer’s disease and other neurological illnesses.
A research team led by University of Central Florida professor Kiminobu Sugaya found that treating bone marrow cells in laboratory cultures with bromodeoxyuridine, a compound that becomes part of DNA, made adult human stem cells more likely to develop as brain cells after they were implanted in adult rat brains. The findings will be included in the next issue of the Restorative Neurology and Neuroscience journal, which is scheduled to be published in late February.

Sugaya and his colleagues at UCF’s Burnett College of Biomedical Sciences hope to eventually show that stem cells transplanted from a patient’s blood or bone marrow will be an effective treatment for Alzheimer’s and other neurological diseases because they can replace cells that die from those ailments. The researchers are working with a $1.4 million grant from the National Institutes of Health.



"By using a patient’s own stem cells instead of embryonic stem cells, we’re able to avoid the ethical concerns many people have about stem cell research," Sugaya said. "We also don’t have to worry about the immune system rejecting the new cells."

Stem cells hold promise for the treatment of many diseases because they are capable of dividing endlessly and developing into many different types of cells in the human body. The researchers at UCF and the University of Illinois at Chicago, where Sugaya taught before moving to UCF last summer, are the first to demonstrate improved memory in adult animals after transplanting neural stem cells into their brains.

Sugaya and his colleagues used bromodeoxyuridine to improve the chances that the stem cells taken from adults’ bone marrow would have the potential to develop more efficiently into neural cells.

In the same experiments, they reported successes in taking stem cells from bone marrow and getting them to become retinal cells after they were implanted in rats. Improving the chances of implanted cells functioning as retinal cells is an encouraging sign for the treatment of glaucoma and other diseases that cause patients to lose their vision.

Sugaya hopes further studies at UCF will lead to researchers gaining more control over ensuring that cells develop properly as brain cells once implanted in brains and as retinal cells when implanted in eyes. His research group also is testing the ability of stem cells taken from adults’ bone marrow to become other types of cells, such as heart muscle cells, after they have been treated with bromodeoxyuridine. Many more tests using cell cultures and animals need to be conducted before any trials on humans can be done.

Sugaya’s colleagues include Jose Pulido, formerly a professor at the University of Illinois at Chicago’s School of Ophthalmology and Visual Sciences, and Sugaya’s wife, Ikuko, a research associate in his UCF lab.

Technologies from the research project are licensed to NewNeural LLC, a company funded by Sugaya and two other founders. NewNeural works to develop and commercialize products that improve the brain’s ability to repair and replace damaged brain cells.

Chad Binette | EurekAlert!
Further information:
http://www.ucf.edu

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>