Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCF stem cell research may hold promise for treating Alzheimer’s disease

14.02.2005


A compound may improve the chances that stem cells transplanted from a patient’s bone marrow will help take over brain functions



A compound similar to the components of DNA may improve the chances that stem cells transplanted from a patient’s bone marrow to the brain will take over the functions of damaged cells and help treat Alzheimer’s disease and other neurological illnesses.
A research team led by University of Central Florida professor Kiminobu Sugaya found that treating bone marrow cells in laboratory cultures with bromodeoxyuridine, a compound that becomes part of DNA, made adult human stem cells more likely to develop as brain cells after they were implanted in adult rat brains. The findings will be included in the next issue of the Restorative Neurology and Neuroscience journal, which is scheduled to be published in late February.

Sugaya and his colleagues at UCF’s Burnett College of Biomedical Sciences hope to eventually show that stem cells transplanted from a patient’s blood or bone marrow will be an effective treatment for Alzheimer’s and other neurological diseases because they can replace cells that die from those ailments. The researchers are working with a $1.4 million grant from the National Institutes of Health.



"By using a patient’s own stem cells instead of embryonic stem cells, we’re able to avoid the ethical concerns many people have about stem cell research," Sugaya said. "We also don’t have to worry about the immune system rejecting the new cells."

Stem cells hold promise for the treatment of many diseases because they are capable of dividing endlessly and developing into many different types of cells in the human body. The researchers at UCF and the University of Illinois at Chicago, where Sugaya taught before moving to UCF last summer, are the first to demonstrate improved memory in adult animals after transplanting neural stem cells into their brains.

Sugaya and his colleagues used bromodeoxyuridine to improve the chances that the stem cells taken from adults’ bone marrow would have the potential to develop more efficiently into neural cells.

In the same experiments, they reported successes in taking stem cells from bone marrow and getting them to become retinal cells after they were implanted in rats. Improving the chances of implanted cells functioning as retinal cells is an encouraging sign for the treatment of glaucoma and other diseases that cause patients to lose their vision.

Sugaya hopes further studies at UCF will lead to researchers gaining more control over ensuring that cells develop properly as brain cells once implanted in brains and as retinal cells when implanted in eyes. His research group also is testing the ability of stem cells taken from adults’ bone marrow to become other types of cells, such as heart muscle cells, after they have been treated with bromodeoxyuridine. Many more tests using cell cultures and animals need to be conducted before any trials on humans can be done.

Sugaya’s colleagues include Jose Pulido, formerly a professor at the University of Illinois at Chicago’s School of Ophthalmology and Visual Sciences, and Sugaya’s wife, Ikuko, a research associate in his UCF lab.

Technologies from the research project are licensed to NewNeural LLC, a company funded by Sugaya and two other founders. NewNeural works to develop and commercialize products that improve the brain’s ability to repair and replace damaged brain cells.

Chad Binette | EurekAlert!
Further information:
http://www.ucf.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>