Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tufts-NEMC researchers identify enzyme that activates cancer cell growth and invasion

14.02.2005


Developing compounds to block activation pathway



Researchers from Tufts-New England Medical Center have identified a long-sought-after enzyme that interacts with a specific protease-activated receptor, PAR1, on breast cancer cells. The study authors identified metalloprotease-1 as the molecular scissors that activates PAR1 resulting in cancer cell invasion and tumor growth. They were able to block the spread of the breast cancer in animals using novel compounds called pepducins that act on the inside surface of the cell downstream of the enzyme and receptor. Their study appears in the February 11 edition of the journal Cell.

PARs are a unique class of receptors that have long been known to play critical roles in blood clotting, inflammation and growth of blood vessels. More recently, PAR1 has been linked with the invasive and metastatic properties of many different kinds of cancers, however, it was not known how the receptor was being activated in tumors.


"We were surprised to find that the cancer cell itself did not provide the missing protease. We found that the protease was being secreted by the surrounding host cells. This is an example of a cancer cell manipulating the host to provide the key missing ingredient, namely the protease," said Athan Kuliopulos, MD, PhD, of Tufts-NEMC’s Molecular Oncology Research Institute and Hematology-Oncology Division, and the study’s lead author. "The MMP-1 protease was thought to be mainly involved in cleavage of collagen. This means that MMP-1 is not only cutting up the tough collagen matrix that surrounds cancer cells, it is also activating PAR1 to enable the cancer to invade into other tissues."

The researchers identified several cell-penetrating compounds called pepducins that block activated PAR1 from triggering cancer invasion and angiogenesis. Tufts-NEMC has filed patent applications for these pepducins and will be exploring further research in this area.

"We believe that blocking the MMP-1/PAR1 pathway with the pepducins described in our study could provide a novel therapeutic approach for treating invasive cancers and possibly other tissue remodeling processes such as inflammation and atherosclerosis," said Kuliopulos.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>