Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Shapes of Life: NIGMS Project Yields More Than 1,000 Protein Structures

11.02.2005


The Protein Structure Initiative (PSI), a national program aimed at determining the three-dimensional shapes of a wide range of proteins, has now determined more than 1,000 different structures. These structures will shed light on how proteins function in many life processes and could lead to targets for the development of new medicines.


Crystal structure of a protein with unknown function from Leishmania major, a parasite of the human immune system.



The PSI is a 10-year, approximately $600 million project funded largely by the National Institute of General Medical Sciences (NIGMS), part of the National Institutes of Health. The first half of this project—a pilot phase that started in 2000—has centered on developing new tools and processes that enable researchers to quickly, cheaply, and reliably determine the shapes of many proteins found in nature.

"One thousand protein structures is a significant milestone for the PSI, and it shows an impressive return on the investment in the technology and methods for rapid structure determination," said Jeremy M. Berg, Ph.D., director of NIGMS. "These structures are interesting in their own right and provide the basis for modeling many important proteins."


Some of the newly determined structures are of proteins found in plants, mice, yeast, and bacteria, including the pathogenic types that cause pneumonia, anthrax, and tuberculosis.

The nine PSI pilot centers have transformed protein structure determination from a mostly manual process to a highly automated one. Robotic instruments rapidly clone, express, purify, crystallize, and analyze many proteins simultaneously, cutting the time it takes to determine a single protein structure from months to days. For example, a robotic arm drops protein solution into thousands of tiny wells for crystallization trials, and an imaging system quickly scans the wells looking for signs of crystal formation—key to capturing protein structures.

"At this large scale, it would be unthinkable to do all these steps by hand," said John Norvell, Ph.D., director of the PSI at NIGMS and a scientist trained in protein structure determination. He noted that some robotics and automated tools have been refined and are now marketed by companies for general structural biology applications.

As the PSI pilot centers have put automated structure determination pipelines in place, the number of protein structures they have solved has increased significantly. In the second, third, and fourth years of the pilot phase, the centers in aggregate reported 109, 217, and 348 structures, respectively. Now, halfway through the fifth year, they’ve surpassed a total of 1,000. Many of these structures are very different from previously known structures, said Norvell.

The findings contribute to the initiative’s ultimate goal of providing structural information on 4,000-6,000 unique proteins that represent the variety found in organisms ranging from bacteria to humans. Researchers can use these structures, which are determined experimentally, to build computer models of the structures of other proteins with related amino acid sequences.

Although the main focus of the second phase of the PSI will be on solving protein structures, Norvell said there will be continued development of new technology: "As we reach for higher-hanging fruit—protein structures that are more complex and harder to solve—we will need to develop additional tools and methods."

As part of the PSI effort, all the structures determined by the centers are collected, stored, and made publicly available by the Protein Data Bank (PDB), http://www.rcsb.org/pdb/, a repository of three-dimensional biological structure data.

"The protein structures solved by the PSI are more than a scientific stamp collection," explained Norvell. "They will help researchers better understand the function of proteins, predict the shape of unknown proteins, quickly identify targets for drug development, and compare protein structures from normal and diseased tissues." In general, a broad range of biomedical researchers will benefit from the PSI’s technical advances, experimental data, and availability of new materials, such as reagents.

"There are a lot of proteins that are incredibly important to understanding human biology and medicine, yet we know very little about most of them," said Norvell. "The PSI will provide important information about these molecules so vital to life."

The nine pilot centers participating in the first phase of the PSI are:

  • The Berkeley Structural Genomics Center,
    http://www.strgen.org/
  • The Center for Eukaryotic Structural Genomics,
    http://www.uwstructuralgenomics.org/
  • The Joint Center for Structural Genomics,
    http://www.jcsg.org/
  • The Midwest Center for Structural Genomics,
    http://www.mcsg.anl.gov/
  • The New York Structural Genomics Research Consortium,
    http://www.nysgrc.org/
  • The Northeast Structural Genomics Consortium,
    http://www.nesg.org/
  • The Southeast Collaboratory for Structural Genomics,
    http://www.secsg.org/

The Structural Genomics of Pathogenic Protozoa Consortium, http://www.sgpp.org/

The TB Structural Genomics Consortium, http://www.doe-mbi.ucla.edu/TB/
The pilot phase of the PSI will end in mid-2005. Centers for the second phase will be announced in July 2005.

In addition to NIGMS, the PSI currently receives funding from the National Institute of Allergy and Infectious Diseases, a component of the National Institutes of Health.

For more information about the PSI, please visit http://www.nigms.nih.gov/psi/. To schedule an interview with Jeremy M. Berg, Ph.D., or John Norvell, Ph.D., please contact the NIGMS Office of Communications and Public Liaison at 301-496-7301.

NIGMS is one of the 27 components of NIH, the premier federal agency for biomedical research. The NIGMS mission is to support basic biomedical research that lays the foundation for advances in disease diagnosis, treatment and prevention.

Emily Carlson | EurekAlert!
Further information:
http://www.nigms.nih.gov

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>