Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Shapes of Life: NIGMS Project Yields More Than 1,000 Protein Structures

11.02.2005


The Protein Structure Initiative (PSI), a national program aimed at determining the three-dimensional shapes of a wide range of proteins, has now determined more than 1,000 different structures. These structures will shed light on how proteins function in many life processes and could lead to targets for the development of new medicines.


Crystal structure of a protein with unknown function from Leishmania major, a parasite of the human immune system.



The PSI is a 10-year, approximately $600 million project funded largely by the National Institute of General Medical Sciences (NIGMS), part of the National Institutes of Health. The first half of this project—a pilot phase that started in 2000—has centered on developing new tools and processes that enable researchers to quickly, cheaply, and reliably determine the shapes of many proteins found in nature.

"One thousand protein structures is a significant milestone for the PSI, and it shows an impressive return on the investment in the technology and methods for rapid structure determination," said Jeremy M. Berg, Ph.D., director of NIGMS. "These structures are interesting in their own right and provide the basis for modeling many important proteins."


Some of the newly determined structures are of proteins found in plants, mice, yeast, and bacteria, including the pathogenic types that cause pneumonia, anthrax, and tuberculosis.

The nine PSI pilot centers have transformed protein structure determination from a mostly manual process to a highly automated one. Robotic instruments rapidly clone, express, purify, crystallize, and analyze many proteins simultaneously, cutting the time it takes to determine a single protein structure from months to days. For example, a robotic arm drops protein solution into thousands of tiny wells for crystallization trials, and an imaging system quickly scans the wells looking for signs of crystal formation—key to capturing protein structures.

"At this large scale, it would be unthinkable to do all these steps by hand," said John Norvell, Ph.D., director of the PSI at NIGMS and a scientist trained in protein structure determination. He noted that some robotics and automated tools have been refined and are now marketed by companies for general structural biology applications.

As the PSI pilot centers have put automated structure determination pipelines in place, the number of protein structures they have solved has increased significantly. In the second, third, and fourth years of the pilot phase, the centers in aggregate reported 109, 217, and 348 structures, respectively. Now, halfway through the fifth year, they’ve surpassed a total of 1,000. Many of these structures are very different from previously known structures, said Norvell.

The findings contribute to the initiative’s ultimate goal of providing structural information on 4,000-6,000 unique proteins that represent the variety found in organisms ranging from bacteria to humans. Researchers can use these structures, which are determined experimentally, to build computer models of the structures of other proteins with related amino acid sequences.

Although the main focus of the second phase of the PSI will be on solving protein structures, Norvell said there will be continued development of new technology: "As we reach for higher-hanging fruit—protein structures that are more complex and harder to solve—we will need to develop additional tools and methods."

As part of the PSI effort, all the structures determined by the centers are collected, stored, and made publicly available by the Protein Data Bank (PDB), http://www.rcsb.org/pdb/, a repository of three-dimensional biological structure data.

"The protein structures solved by the PSI are more than a scientific stamp collection," explained Norvell. "They will help researchers better understand the function of proteins, predict the shape of unknown proteins, quickly identify targets for drug development, and compare protein structures from normal and diseased tissues." In general, a broad range of biomedical researchers will benefit from the PSI’s technical advances, experimental data, and availability of new materials, such as reagents.

"There are a lot of proteins that are incredibly important to understanding human biology and medicine, yet we know very little about most of them," said Norvell. "The PSI will provide important information about these molecules so vital to life."

The nine pilot centers participating in the first phase of the PSI are:

  • The Berkeley Structural Genomics Center,
    http://www.strgen.org/
  • The Center for Eukaryotic Structural Genomics,
    http://www.uwstructuralgenomics.org/
  • The Joint Center for Structural Genomics,
    http://www.jcsg.org/
  • The Midwest Center for Structural Genomics,
    http://www.mcsg.anl.gov/
  • The New York Structural Genomics Research Consortium,
    http://www.nysgrc.org/
  • The Northeast Structural Genomics Consortium,
    http://www.nesg.org/
  • The Southeast Collaboratory for Structural Genomics,
    http://www.secsg.org/

The Structural Genomics of Pathogenic Protozoa Consortium, http://www.sgpp.org/

The TB Structural Genomics Consortium, http://www.doe-mbi.ucla.edu/TB/
The pilot phase of the PSI will end in mid-2005. Centers for the second phase will be announced in July 2005.

In addition to NIGMS, the PSI currently receives funding from the National Institute of Allergy and Infectious Diseases, a component of the National Institutes of Health.

For more information about the PSI, please visit http://www.nigms.nih.gov/psi/. To schedule an interview with Jeremy M. Berg, Ph.D., or John Norvell, Ph.D., please contact the NIGMS Office of Communications and Public Liaison at 301-496-7301.

NIGMS is one of the 27 components of NIH, the premier federal agency for biomedical research. The NIGMS mission is to support basic biomedical research that lays the foundation for advances in disease diagnosis, treatment and prevention.

Emily Carlson | EurekAlert!
Further information:
http://www.nigms.nih.gov

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>