Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Shapes of Life: NIGMS Project Yields More Than 1,000 Protein Structures

11.02.2005


The Protein Structure Initiative (PSI), a national program aimed at determining the three-dimensional shapes of a wide range of proteins, has now determined more than 1,000 different structures. These structures will shed light on how proteins function in many life processes and could lead to targets for the development of new medicines.


Crystal structure of a protein with unknown function from Leishmania major, a parasite of the human immune system.



The PSI is a 10-year, approximately $600 million project funded largely by the National Institute of General Medical Sciences (NIGMS), part of the National Institutes of Health. The first half of this project—a pilot phase that started in 2000—has centered on developing new tools and processes that enable researchers to quickly, cheaply, and reliably determine the shapes of many proteins found in nature.

"One thousand protein structures is a significant milestone for the PSI, and it shows an impressive return on the investment in the technology and methods for rapid structure determination," said Jeremy M. Berg, Ph.D., director of NIGMS. "These structures are interesting in their own right and provide the basis for modeling many important proteins."


Some of the newly determined structures are of proteins found in plants, mice, yeast, and bacteria, including the pathogenic types that cause pneumonia, anthrax, and tuberculosis.

The nine PSI pilot centers have transformed protein structure determination from a mostly manual process to a highly automated one. Robotic instruments rapidly clone, express, purify, crystallize, and analyze many proteins simultaneously, cutting the time it takes to determine a single protein structure from months to days. For example, a robotic arm drops protein solution into thousands of tiny wells for crystallization trials, and an imaging system quickly scans the wells looking for signs of crystal formation—key to capturing protein structures.

"At this large scale, it would be unthinkable to do all these steps by hand," said John Norvell, Ph.D., director of the PSI at NIGMS and a scientist trained in protein structure determination. He noted that some robotics and automated tools have been refined and are now marketed by companies for general structural biology applications.

As the PSI pilot centers have put automated structure determination pipelines in place, the number of protein structures they have solved has increased significantly. In the second, third, and fourth years of the pilot phase, the centers in aggregate reported 109, 217, and 348 structures, respectively. Now, halfway through the fifth year, they’ve surpassed a total of 1,000. Many of these structures are very different from previously known structures, said Norvell.

The findings contribute to the initiative’s ultimate goal of providing structural information on 4,000-6,000 unique proteins that represent the variety found in organisms ranging from bacteria to humans. Researchers can use these structures, which are determined experimentally, to build computer models of the structures of other proteins with related amino acid sequences.

Although the main focus of the second phase of the PSI will be on solving protein structures, Norvell said there will be continued development of new technology: "As we reach for higher-hanging fruit—protein structures that are more complex and harder to solve—we will need to develop additional tools and methods."

As part of the PSI effort, all the structures determined by the centers are collected, stored, and made publicly available by the Protein Data Bank (PDB), http://www.rcsb.org/pdb/, a repository of three-dimensional biological structure data.

"The protein structures solved by the PSI are more than a scientific stamp collection," explained Norvell. "They will help researchers better understand the function of proteins, predict the shape of unknown proteins, quickly identify targets for drug development, and compare protein structures from normal and diseased tissues." In general, a broad range of biomedical researchers will benefit from the PSI’s technical advances, experimental data, and availability of new materials, such as reagents.

"There are a lot of proteins that are incredibly important to understanding human biology and medicine, yet we know very little about most of them," said Norvell. "The PSI will provide important information about these molecules so vital to life."

The nine pilot centers participating in the first phase of the PSI are:

  • The Berkeley Structural Genomics Center,
    http://www.strgen.org/
  • The Center for Eukaryotic Structural Genomics,
    http://www.uwstructuralgenomics.org/
  • The Joint Center for Structural Genomics,
    http://www.jcsg.org/
  • The Midwest Center for Structural Genomics,
    http://www.mcsg.anl.gov/
  • The New York Structural Genomics Research Consortium,
    http://www.nysgrc.org/
  • The Northeast Structural Genomics Consortium,
    http://www.nesg.org/
  • The Southeast Collaboratory for Structural Genomics,
    http://www.secsg.org/

The Structural Genomics of Pathogenic Protozoa Consortium, http://www.sgpp.org/

The TB Structural Genomics Consortium, http://www.doe-mbi.ucla.edu/TB/
The pilot phase of the PSI will end in mid-2005. Centers for the second phase will be announced in July 2005.

In addition to NIGMS, the PSI currently receives funding from the National Institute of Allergy and Infectious Diseases, a component of the National Institutes of Health.

For more information about the PSI, please visit http://www.nigms.nih.gov/psi/. To schedule an interview with Jeremy M. Berg, Ph.D., or John Norvell, Ph.D., please contact the NIGMS Office of Communications and Public Liaison at 301-496-7301.

NIGMS is one of the 27 components of NIH, the premier federal agency for biomedical research. The NIGMS mission is to support basic biomedical research that lays the foundation for advances in disease diagnosis, treatment and prevention.

Emily Carlson | EurekAlert!
Further information:
http://www.nigms.nih.gov

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>