Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain synapse formation linked to proteins

11.02.2005


Critical connections that neurons form in the brain during development turn out to rely on common but overlooked cells, called glia. These cells were known to support the neurons in adults, but had never been fingered as players in forming the connections between neurons, known as synapses.



The Stanford University School of Medicine researchers who conducted the work, led by Ben Barres, MD, PhD, professor of neurobiology, also discovered two of the proteins made by glial cells that signal synapse formation. This study, published in the Feb. 11 issue of Cell, could help researchers understand diseases such as epilepsy and addiction in which too many synapses form.

"We knew glia had a close relationship with neurons," Barres said. "We never thought the synapses would entirely fail to form without the glia." In fact, that relationship was considered so unlikely that the grant application was turned down six times because the work was considered too risky. The research was eventually funded by the National Institute on Drug Abuse, whose interest in the work stems from the possibility that new synapses are what keep recovered addicts craving drugs.


Barres said the relationship remained hidden in past research because of the neuron’s complete dependence on glial cells for survival in a lab dish. Nobody had ever succeeded in maintaining neurons without glial cells, so little was known about what the glial cells did, exactly.

However, in past work, Barres and his team devised a way of keeping the neurons alive without glial cells. In this environment the neurons formed one-seventh the number of synapses compared to cells grown with glia. He added that the glia probably have many additional roles, also unknown. "Ninety percent of human brain cells are glia and it’s completely a mystery what they do," he said.

These previous experiments simply showed that the proteins glia secrete help neurons in a lab dish form synapses. What wasn’t clear is which proteins, exactly, are responsible for the new synapses and whether glia perform the same role in the developing brain. The Cell paper addressed these questions.

Barres and his team found that when they added various glial proteins to neurons grown in a lab dish without glia, only two proteins, called thrombospondins, encouraged new synapses to form. However, the synapses aren’t completely normal. The synapse is made from two neurons-one that sends the message and one that receives the message. On the sending side, the synapse appears normal, but the receiving end isn’t able to detect signals. Barres said other as yet unidentified signals from glia are necessary to form fully functional synapses.

When the group created mice that lacked the two thrombospondins they found 40 percent fewer synapses on average than the normal counterparts.

These thrombospondins’ role of encouraging synapses to form makes sense, given when they are present in the brain: Barres and his group found them in the brains of developing mice during the time that the brain is actively making new synapses.

Interestingly, recent studies have found that one of the two thrombospondins is found at far higher levels in adult human brains than in adult monkey brains, possibly suggesting a key difference in the two animals’ ability to form new synapses.

Barres said the thrombospondins they studied are just two of five related proteins. So far it hasn’t been possible to eliminate all five thrombospondins in mice, but he suspects what few synapses the mice eked out were thanks to the remaining thrombospondins or perhaps other glial proteins. "Had we been able to knock out all five we might have seen even more synapse loss," Barres said.

Figuring out how and why new synapses form could be a boon for doctors treating people with brain damage. "If we deliver thrombospondins in the adult brain we could potentially turn on synapse formation," Barres said.

People with epilepsy face the opposite problem. In this disease, the area of the brain where the epileptic attack originates contains both a mass of glial cells and neurons with excessive synapses. Barres suggested that the glial scar might have originally triggered the additional synapses to form. Learning more about how glia trigger synapse formation could help prevent the disabling condition.

Co-first authors on this paper were Karen Christopherson, PhD, postdoctoral fellow, and Erik Ullian, PhD, a postdoctoral fellow now at UCSF. Other Stanford researchers who contributed to this work are undergraduate students Caleb Stokes and Christine Mullowney.

Amy Adams | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>