Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prehistoric jawbone reveals evolution repeating itself

11.02.2005


A 115-million-year-old fossil of a tiny egg-laying mammal thought to be related to the platypus provides compelling evidence of multiple origins of acute hearing in humans and other mammals.



The discovery of the prehistoric jawbone, reported in the Feb. 11, 2005, issue of Science, suggests that the transformation of bones from the jaw into the small bones of the middle ear occurred at least twice in the evolutionary lines of living mammals after their split from a common ancestor some 200 million years ago.

At a dig on the south coast of the Australian state of Victoria, paleontologists found a lower jawbone of the world’s oldest-known monotreme, Teinolophos trusleri, a small primitive mammal much like today’s shrew.


"The ear bones are still attached to the lower jaw, which implies that this shift had to occur in later monotremes and independently of the shift occurring in the common ancestor of marsupials and placentals," said James Hopson, Ph.D., professor of organismal biology and anatomy of the University of Chicago and one of the authors of the paper.

Many paleontologists have doubted that such a seemingly complex adaptation could have originated more than once in mammals, but according to the authors of the paper, the evidence of T. trusleri indicates that it did. "Nothing like that has ever been found before," said Tom Rich, Ph.D., lead author of the paper and curator of vertebrate paleontology at Museum Victoria in Melbourne, Australia. "These jaws may be the oldest evidence of monotremes on Earth," Rich said. "Some of these jawbones show facets for what scientists call accessory bones – bones that humans and most other mammals do not have."

The lower jaw of the human is made up of just one bone, the dentary. Some accessory jaw bones (called the angular, the articular and the prearticular) that are present in mammal-like reptiles that gave rise to the mammals eventually ended up as part of the middle ear in humans: the angular became the ectotympanic or tympanic ring that supports the eardrum; and the articular and prearticular became the malleus – one of the three bones in the middle ear that transmit sound from the eardrum to the inner ear where nerves pick up the vibrations from sounds and make it possible for us to hear.

Some of the most advanced mammal-like reptiles had some of these bones already functioning in hearing and they occurred earlier in time than T. trusleri, Rich said.

This suggests that the development of the acute hearing system with the chain of bones from the eardrum to the inner ear developed at least twice in the history of mammals, he said, once in the group that gave rise to the placentals and marsupials, and another in monotremes, which includes T. trusleri.

The presence of a trough in the lower jaw of the T. trusleri supports the view of independent origins of the mammalian middle ear, said co-author Pat Vickers-Rich, Ph.D., of Monash University in Victoria, Australia. "We suspect in that groove lay some accessory bones, which in more advanced forms were incorporated into the middle ear," she said. "The trough tells us that such a change had not yet occurred in Teinolophos, even though 115 million years ago monotremes had split off on their own evolutionary line from the marsupials and placentals."

How can this supposedly rare and unexpected evolutionary change have occurred so commonly in early mammals? "Recent studies of jaw and ear function in primitive mammal-like reptiles indicate that the larger angular bone may have supported an eardrum while still part of the lower jaw," Hopson said. But once the dentary bone made a new jaw hinge with the skull in the immediate predecessor of mammals, the accessory jawbones may have abandoned their job of supporting the jaw and evolved exclusively into the middle ear sound-transmitting function.

"The evidence of the fossils indicates that though this did eventually occur, it took place gradually and piecemeal in each of the descendant lineages, so that the complete freeing of the ear bones from the jaw and their attachment to the skull occurred many times independently," Hopson said. "Only the evidence of fossils has been able to unravel this tangled history of a complex adaptation."

Anne M. Musser, Ph.D., of the Australian Museum and Timothy F. Flannery, Ph.D., of the South Australian Museum also were co-authors of the paper.

Catherine Gianaro | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Life Sciences:

nachricht High-Speed Locomotion Neurons Found in the Brainstem
24.10.2017 | Universität Basel

nachricht Antibiotic resistance: a strain of multidrug-resistant Escherichia coli is on the rise
24.10.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Single nanoparticle mapping paves the way for better nanotechnology

24.10.2017 | Physics and Astronomy

A quantum spin liquid

24.10.2017 | Physics and Astronomy

Antibiotic resistance: a strain of multidrug-resistant Escherichia coli is on the rise

24.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>