Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovery May Help Extend Life Of Natural Pesticide


A team led by biologists at the University of California, San Diego has discovered a molecule in roundworms that makes them susceptible to Bacillus thuringiensis toxin, or Bt toxin—a pesticide produced by bacteria and widely used by organic farmers and in genetically engineered crops to ward off insect pests.

Their findings should facilitate the design and use of Bt toxins to prevent insects, which the researchers believe also possess the molecule, from developing resistance to Bt, extending the life of this natural pesticide.

The study, published February 11 in the journal Science, details the structure of a molecule to which Bt attaches, or “binds,” in the lining of the intestines of insects and roundworms. The molecule is a glycolipid—a lipid attached to a tree-like arrangement of sugars. Because changes in the sugars impact Bt’s ability to bind, the researchers believe that their discovery will make it possible to develop better pesticides and lead to new treatments for parasitic infections that affect close to two billion people worldwide.

“Our previous findings with the roundworm C. elegans strongly suggested that specific sugar structures are likely critical for Bt toxin susceptibility,” said Joel Griffitts, the first author on the paper and a former graduate student with UCSD biology professor Raffi Aroian. “This latest paper demonstrates what these sugars actually do. They provide a receptor for the toxin that allows the toxin to recognize its “victim”—a roundworm or an insect. This paper also brings us from the conceptual realm to the chemical nature of these sugar structures—how their atoms are arranged, and how the toxin binds to them.”

“Bt toxin, which is produced by a soil bacterium, is toxic to insects and roundworms, but not to vertebrates, which accounts for its popularity as a pesticide,” explained Aroian, who led the team. “But the development of insect resistance to Bt is a major threat to its long term use. Our findings make it possible to understand resistance at the molecular level and should improve resistance management.”

In collaboration with Paul Cremer and Tinglu Yang, coauthors on the paper and chemists at Texas A&M University, Griffitts and Aroian found that Bt toxin directly binds glycolipids. However, in each of the four Bt resistant mutants tested—bre-2, bre-3, bre-4 and bre-5—the researchers found that there was either zero or dramatically reduced binding of glycolipids to Bt toxin. They concluded that the defective sugar structure of the glycolipid receptor in each of the mutants prevents Bt from binding.

Other members of the research team, coauthors Stuart Haslam and Anne Dell, biologists at Imperial College London; Barbara Mulloy, a biochemist at the Laboratory for Molecular Structure, National Institute for Biological Standards and Control in Hertfordshire, England; and Howard Morris, a biochemist at the M-SCAN Mass Spectrometry Research and Training Centre in Berkshire England, determined the chemical structure of the normal glycolipid receptor that binds Bt toxin.

Elements of this structure are found in both insects and nematodes, but are not found in vertebrates at all, which may be one reason these proteins are safe to vertebrates. This work furthermore opens up the possibility of using Bt toxins against roundworms that parasitize humans. “These parasites infect nearly one-third of the human population and pose a significant health problem in developing countries,” said Aroian. “Perhaps one-day vertebrate-safe Bt toxins could be used as human therapies against these parasites.”

Griffitts and Aroian credit the flexibility of the roundworm C. elegans as an experimental system, particularly the ease of manipulating it genetically, in making it possible to find and characterize the structure of the long sought-after Bt receptor. However, their results apply to insects as well. Michael Adang and Stephan Garczynski, coauthors and entomologists at the University of Georgia, showed that the glycolipid receptor is present in the tobacco hornworm, an insect pest that is susceptible to Bt toxins used commercially in plants.

“It will now be possible to monitor insect populations near fields where Bt is used and catch insect resistance in its early stages by looking for changes in glycolipids,” said Aroian. “If changes are detected, switching to another pesticide, perhaps even another variety of Bt that works through a different mechanism, could prevent the resistance genes from becoming widespread.”

According to the researchers, prior work indicates that there are other receptors that also contribute to Bt resistance. Combining pesticides that work through different receptors or designing pesticides that can work through more than one receptor type could thwart the development of resistance.

“This paper presents an intriguing question,” said Griffitts. “In light of findings by insect biologists that certain proteins function as important Bt toxin receptors in some cases, how might glycolipid and protein receptors cooperate to engage this intoxication program? If the field can figure this out, it might allow for the engineering of toxins that can utilize either type of receptor alternatively, such that host resistance would require the mutation of both receptor types. This means that resistance would be exponentially less probable.”

The study was funded by the National Science Foundation, the Burroughs-Wellcome Foundation and the Beckman Foundation.

Sherry Seethaler | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>