Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature Points the way to a sustainable hydrogen economy

11.02.2005


“This is an exciting early step in developing a sustainable system for producing electricity from hydrogen” said Professor Chris Pickett (Associate Head of the Biological Chemistry Department at JIC). ”In Nature iron–sulphur enzymes catalyse a range of important chemical reactions that industry can only do by using precious metal catalysts and/or high temperatures and pressures. Based on Nature’s blueprint we are a step closer to building an iron-sulfur catalyst for reactions fundamental to a sustainable hydrogen economy”.



As a blueprint for their syntheses the JIC team used the known molecular structures of the catalytic centre - ‘the H-cluster’- found in the iron–only hydrogenase enzyme from two bacteria (Desulfovibrio desulfuricans and Clostridium pasteurianum). Hydrogenases catalyse interconversion of protons, electrons and hydrogen at extraordinary high rates. Their colleagues in Italy and the US [3] used state-of-the-art computational and spectroscopic techniques to probe the properties of the artificial H-cluster. The synthetic cluster was found to catalyse the reduction of protons to hydrogen albeit with poor energy efficiency. Nevertheless, the researchers believe their discovery should provide a lead to new materials that could eventually replace platinum.

[1] The John Innes Centre (JIC), Norwich, UK is an independent, world-leading research centre in plant and microbial sciences. The JIC has over 850 staff and students. JIC carries out high quality fundamental, strategic and applied research to understand how plants and microbes work at the molecular, cellular and genetic levels. The JIC also trains scientists and students, collaborates with many other research laboratories and communicates its science to end-users and the general public. The JIC is grant-aided by the Biotechnology and Biological Sciences Research Council.


[2] The US Department of Energy Report ‘Basic Research Needs for the Hydrogen Economy’ (May 2003) recognised long term strategic issues with respect to supply/demand for platinum, including security of supply. The September 2003 UK Department for Transport report ‘Platinum and Hydrogen for Fuel Cell Vehicles’ documented the need for both a dramatic decrease in platinum loading in fuel cells and 5% year on year growth of South African platinum production to meet modest scenarios for hydrogen fuel cell vehicles over the next three decades. Small fuel cells for powering consumer products such as lap tops, mobile phones etc will be on the market in mid 2006 and the expected growth in this area will undoubtedly place further demands on platinum supply; as will in the longer term the impact of stationary fuel cell units for domestic or industrial gas to electricity conversion.

[3] Department of Biotechnology and Biosciences, University of Milan-Biocca, Milan, Italy, Department of Physics, Washington State University and WR Wiley Environmental Science Laboratory and Chemical Science Division, Pacific Northwest National Laboratory, Washington, USA.

Ray Mathias | alfa
Further information:
http://www.jic.ac.uk
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>