Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Falling canopy ants glide home

10.02.2005


Steve Yanoviak tosses ants from very high places: tropical forest canopy trees. In the 10 February, 2005 issue of the journal, Nature, Yanoviak, ant biologist, Mike Kaspari, and biomechanics expert, Robert Dudley, publish an amazing observation: canopy ant workers (Cephalotes atratus L) jettisoned from branches 30 m above the ground, glide backwards to the trunk of the same tree with incredible accuracy. This is the first published account of directed gliding in wingless insects.

Eighty-five percent of falling C. atratus workers glide back to their home tree. Marked ants often came right back to the branch where they started within ten minutes of falling or being dropped off! "I first noticed directed descent behavior on BCI [the Smithsonian’s Barro Colorado Island field station in Panama] in 1998 while working on a canopy ant project with Mike Kaspari. Some spiny C. atratus workers got stuck in my hand while I was sitting in a tree crown. When I brushed them off, they appeared to glide rather than fall haphazardly," Yanoviak recalls.

"Early on, when Steve was dropping ants from the radio tower on BCI I got really excited because I could see their very clear ’J’ trajectory." explains Kaspari, zoology professor at the University of Oklahoma and Research Associate at the Smithsonian. Kaspari introduced Steve to Robert Dudley, physiologist at the University of California, Berkeley and also a Smithsonian Research Associate.



Yanoviak’s caught the ants’ initial vertical drop, a quick swivel to orient the hind legs in the direction of the "trunk" and a steep, directed glide and landing on the vertical surface on video he recorded in Peru. Dudley’s high-speed video enabled the authors to quantify the velocity and angle of the glide trajectory as Yanoviak dropped ants from the balcony of the lab on Barro Colorado against a backdrop of white bedsheet.

Additional experiments at Yanoviak’s field sites in Costa Rica and near Iquitos, in Peru, where he currently works collecting mosquitos for the University of Texas Medical Branch and the University of Florida Medical Entomology Laboratory, showed that the ants visually orient toward tree trunks. In addition, small workers don’t fall as far as their larger counterparts before making contact with the tree. Yanoviak: "We still don’t understand exactly what mechanisms the ants use to change direction and to maintain a steady glide path through the air."

Yanoviak and Kaspari also asked whether all canopy ants glide. "I was the guy that stayed on the ground," Kaspari recounts, "while Steve dropped Paraponera [bullet ants that pack a nasty sting] down at me." Canopy ants in two groups: the Cephalotini and the Pseudomyrmecinae glide; arboreal Ponerines and Dolichoderines did not. "The tropical forest canopy, home of half of the rainforest’s animal biodiversity, is a risky place. Canopy creatures live on the edge of a very long fall. For an ant, a 30 m fall to the forest floor is akin to me falling 3.5 miles. An ant falling to the forest floor enters a dark world of mold and decomposition, of predators and scavengers, where the return trip is through a convoluted jungle of dead, accumulated leaves. Gliding is definitely the way to go, and we won’t be surprised if we find more examples of this behavior among wingless canopy insects," Kaspari concludes.

Mike Kaspari | EurekAlert!
Further information:
http://www.si.edu
http://www.ou.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>