Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Falling canopy ants glide home

10.02.2005


Steve Yanoviak tosses ants from very high places: tropical forest canopy trees. In the 10 February, 2005 issue of the journal, Nature, Yanoviak, ant biologist, Mike Kaspari, and biomechanics expert, Robert Dudley, publish an amazing observation: canopy ant workers (Cephalotes atratus L) jettisoned from branches 30 m above the ground, glide backwards to the trunk of the same tree with incredible accuracy. This is the first published account of directed gliding in wingless insects.

Eighty-five percent of falling C. atratus workers glide back to their home tree. Marked ants often came right back to the branch where they started within ten minutes of falling or being dropped off! "I first noticed directed descent behavior on BCI [the Smithsonian’s Barro Colorado Island field station in Panama] in 1998 while working on a canopy ant project with Mike Kaspari. Some spiny C. atratus workers got stuck in my hand while I was sitting in a tree crown. When I brushed them off, they appeared to glide rather than fall haphazardly," Yanoviak recalls.

"Early on, when Steve was dropping ants from the radio tower on BCI I got really excited because I could see their very clear ’J’ trajectory." explains Kaspari, zoology professor at the University of Oklahoma and Research Associate at the Smithsonian. Kaspari introduced Steve to Robert Dudley, physiologist at the University of California, Berkeley and also a Smithsonian Research Associate.



Yanoviak’s caught the ants’ initial vertical drop, a quick swivel to orient the hind legs in the direction of the "trunk" and a steep, directed glide and landing on the vertical surface on video he recorded in Peru. Dudley’s high-speed video enabled the authors to quantify the velocity and angle of the glide trajectory as Yanoviak dropped ants from the balcony of the lab on Barro Colorado against a backdrop of white bedsheet.

Additional experiments at Yanoviak’s field sites in Costa Rica and near Iquitos, in Peru, where he currently works collecting mosquitos for the University of Texas Medical Branch and the University of Florida Medical Entomology Laboratory, showed that the ants visually orient toward tree trunks. In addition, small workers don’t fall as far as their larger counterparts before making contact with the tree. Yanoviak: "We still don’t understand exactly what mechanisms the ants use to change direction and to maintain a steady glide path through the air."

Yanoviak and Kaspari also asked whether all canopy ants glide. "I was the guy that stayed on the ground," Kaspari recounts, "while Steve dropped Paraponera [bullet ants that pack a nasty sting] down at me." Canopy ants in two groups: the Cephalotini and the Pseudomyrmecinae glide; arboreal Ponerines and Dolichoderines did not. "The tropical forest canopy, home of half of the rainforest’s animal biodiversity, is a risky place. Canopy creatures live on the edge of a very long fall. For an ant, a 30 m fall to the forest floor is akin to me falling 3.5 miles. An ant falling to the forest floor enters a dark world of mold and decomposition, of predators and scavengers, where the return trip is through a convoluted jungle of dead, accumulated leaves. Gliding is definitely the way to go, and we won’t be surprised if we find more examples of this behavior among wingless canopy insects," Kaspari concludes.

Mike Kaspari | EurekAlert!
Further information:
http://www.si.edu
http://www.ou.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>