Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Falling canopy ants glide home

10.02.2005


Steve Yanoviak tosses ants from very high places: tropical forest canopy trees. In the 10 February, 2005 issue of the journal, Nature, Yanoviak, ant biologist, Mike Kaspari, and biomechanics expert, Robert Dudley, publish an amazing observation: canopy ant workers (Cephalotes atratus L) jettisoned from branches 30 m above the ground, glide backwards to the trunk of the same tree with incredible accuracy. This is the first published account of directed gliding in wingless insects.

Eighty-five percent of falling C. atratus workers glide back to their home tree. Marked ants often came right back to the branch where they started within ten minutes of falling or being dropped off! "I first noticed directed descent behavior on BCI [the Smithsonian’s Barro Colorado Island field station in Panama] in 1998 while working on a canopy ant project with Mike Kaspari. Some spiny C. atratus workers got stuck in my hand while I was sitting in a tree crown. When I brushed them off, they appeared to glide rather than fall haphazardly," Yanoviak recalls.

"Early on, when Steve was dropping ants from the radio tower on BCI I got really excited because I could see their very clear ’J’ trajectory." explains Kaspari, zoology professor at the University of Oklahoma and Research Associate at the Smithsonian. Kaspari introduced Steve to Robert Dudley, physiologist at the University of California, Berkeley and also a Smithsonian Research Associate.



Yanoviak’s caught the ants’ initial vertical drop, a quick swivel to orient the hind legs in the direction of the "trunk" and a steep, directed glide and landing on the vertical surface on video he recorded in Peru. Dudley’s high-speed video enabled the authors to quantify the velocity and angle of the glide trajectory as Yanoviak dropped ants from the balcony of the lab on Barro Colorado against a backdrop of white bedsheet.

Additional experiments at Yanoviak’s field sites in Costa Rica and near Iquitos, in Peru, where he currently works collecting mosquitos for the University of Texas Medical Branch and the University of Florida Medical Entomology Laboratory, showed that the ants visually orient toward tree trunks. In addition, small workers don’t fall as far as their larger counterparts before making contact with the tree. Yanoviak: "We still don’t understand exactly what mechanisms the ants use to change direction and to maintain a steady glide path through the air."

Yanoviak and Kaspari also asked whether all canopy ants glide. "I was the guy that stayed on the ground," Kaspari recounts, "while Steve dropped Paraponera [bullet ants that pack a nasty sting] down at me." Canopy ants in two groups: the Cephalotini and the Pseudomyrmecinae glide; arboreal Ponerines and Dolichoderines did not. "The tropical forest canopy, home of half of the rainforest’s animal biodiversity, is a risky place. Canopy creatures live on the edge of a very long fall. For an ant, a 30 m fall to the forest floor is akin to me falling 3.5 miles. An ant falling to the forest floor enters a dark world of mold and decomposition, of predators and scavengers, where the return trip is through a convoluted jungle of dead, accumulated leaves. Gliding is definitely the way to go, and we won’t be surprised if we find more examples of this behavior among wingless canopy insects," Kaspari concludes.

Mike Kaspari | EurekAlert!
Further information:
http://www.si.edu
http://www.ou.edu

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>