Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers blend folk treatment, high tech for promising anti-cancer compound

09.02.2005


Ancient wisdom, technological savvy



Researchers at the University of Washington have blended the past with the present in the fight against cancer, synthesizing a promising new compound from an ancient Chinese remedy that uses cancer cells’ rapacious appetite for iron to make them a target.
The substance, artemisinin, is derived from the wormwood plant and has been used in China since ancient times to treat malaria. Earlier work by Henry Lai and Narendra Singh, both UW bioengineers, indicated that artemisinin alone could selectively kill cancer cells while leaving normal cells unharmed.

The new compound appears to vastly improve that deadly selectivity, according to a new study that appeared in a recent issue of the journal Life Sciences. In addition to Lai and Singh, co-authors include Tomikazu Sasaki and Archna Messay, both UW chemists. "By itself, artemisinin is about 100 times more selective in killing cancer cells as opposed to normal cells," Lai said. "In this study, the new artemisinin compound was 34,000 times more potent in killing the cancer cells as opposed to their normal cousins. So the tagging process appears to have greatly increased the potency of artemisinin’s cancer-killing properties."



The compound has been licensed to Chongqing Holley Holdings and Holley Pharmaceuticals, its U.S. subsidiary, to be developed for possible use in humans. Although the compound is promising, officials say, potential use for people is still years away.

In the study, researchers exposed human leukemia cells and white blood cells to the compound. While the leukemia cells quickly died, the white blood cells remained essentially unharmed. The trick to the compound’s effectiveness, according to Lai, appears to be in taking advantage of how cancer cells function.

Because they multiply so rapidly, most cancer cells need more iron than normal cells to replicate DNA. To facilitate that, cancer cells have inlets on their surface, known as transferrin receptors, in greater numbers than other cells. Those receptors allow quick transport into the cell of transferrin, an iron-carrying protein found in blood.

In creating the compound, researchers bound artemisinin to transferrin at the molecular level. The combination of the two ingredients appears to fool the cancer cell. "We call it a Trojan horse because the cancer cell recognizes transferrin as a natural, harmless protein," Lai said. "So the cell picks up the compound without knowing that a bomb – artemisinin – is hidden inside."

Once inside the cell, the artemisinin reacts with the iron, spawning highly reactive chemicals called "free radicals." The free radicals attack other molecules and the cell membrane, breaking it apart and killing the cell.

According to Lai, that process is what initially piqued his interest in artemisinin about 10 years ago. The wormwood extract was used centuries ago in China, but the treatment became lost over time. In the 1970s, it was rediscovered as part of an ancient manuscript containing medical remedies, including a recipe that used a wormwood extract. The medical community soon discovered that the extract, artemisinin, worked well against malaria, and it is currently used for that purpose throughout Asia and Africa.

Artemisinin combats malaria because the malaria parasite collects high iron concentrations as it metabolizes hemoglobin in the blood. As science began to understand how artemisinin functioned, Lai said, he began to wonder if the process had implications for cancer treatment. "I started thinking that maybe we could use this knowledge to selectively target cancer cells," he said. "So far, the outlook appears good."

The next step in development under the Holley licensing agreement will likely be testing in animals and, if that pans out, human trials to gauge the compound’s effectiveness. The current study was funded by the Artemisinin Research Foundation and Chongqing Holley Holdings.

Rob Harrill | EurekAlert!
Further information:
http://www.washington.edu
http://www.sciencedirect.com/science

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>