Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sex hormone metabolite reduces stress, anxiety in female rats

09.02.2005


A steroid hormone released during the metabolism of progesterone, the female sex hormone, reduces the brain’s response to stress, according to research in rats by scientists at Emory University School of Medicine, the Yerkes National Primate Research Center and Atlanta’s Center for Behavioral Neuroscience. The scientists found evidence that the progesterone metabolite allopregnanolone reduces the brain’s response to corticotropin-releasing factor (CRF), a peptide hormone that plays an important role in the stress response in animals. The finding, which was reported in the Nov. 10, 2004 edition of the Journal of Neuroscience, could provide a new drug target for treating anxiety and depression in women.



In the study, Emory researchers Donna Toufexis, PhD, Michael Davis, PhD and Carrie Davis, BS, and Alexis Hammond, BS, of Spelman College, compared how female rats with different levels of the sex hormones, estrogen and progesterone, reacted to loud noises after injections of CRF into the brain’s lateral ventricles. CRF injections usually increase the "acoustic startle response" in this test used to gauge stress and anxiety, a phenomenon called CRF-enhanced startle.

In the first experiment, the scientists compared acoustic startle responses after CRF injection in an estrogen-only group, an estrogen-plus-progesterone group and a control group that did not receive any sex hormones. All the rats lacked ovaries and the ability to produce sex hormones naturally. Acoustic startle response was unaffected in the estrogen-only group and the control group. In the estrogen-plus-progesterone group, however, CRF-enhanced startle was significantly lower than in the other groups.


In another set of experiments, the researchers discovered that lactating female rats with naturally high levels of progesterone had markedly lower CRF-enhanced startle responses compared to virgin females with intact ovaries. "Findings from theses initial experiments pointed toward the conclusion that progesterone inhibits the effect of CRF on the acoustic startle response," said Toufexis.

To test this hypothesis, the researchers gave only progesterone to female rats lacking ovaries, then compared the acoustic startle response to female rats without ovaries injected with corn oil. The progesterone group displayed significantly lower CRF-enhanced startle responses. When ovariectomized females were tested with allopregnanolone alone it also reduced CRF-enahnced startle.

In a final experiment, the scientists compared the effects on females that received progesterone with those that received medroxy-progesterone, an artificial progestin that binds to progesterone receptors but does not metabolize into the progesterone metabolite allopregnanolone. Only natural progesterone reduced CRF-enhanced startle.

Previous studies have determined that allopregnanolone enhances the activity of GABA, the main inhibitory neurotransmitter in the central nervous system, at its receptors throughout the brain. This mechanism, Toufexis said, likely accounts for progesterone’s blunting effect on the brain’s stress system.

Findings from the study correlate with clinical evidence that some people suffering from depression or anxiety have low allopregnanolone levels that normalize after treatment with anti-depressant medications.

"New drugs could potentially be developed that mimic the effect of allopregnanolone on the GABA receptor, providing a new approach for controlling mood disorders in women," said Toufexis. "The next step is to determine where exactly allopregnanolone is working in the brain to reduce the effect of CRF."

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>