Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sex hormone metabolite reduces stress, anxiety in female rats


A steroid hormone released during the metabolism of progesterone, the female sex hormone, reduces the brain’s response to stress, according to research in rats by scientists at Emory University School of Medicine, the Yerkes National Primate Research Center and Atlanta’s Center for Behavioral Neuroscience. The scientists found evidence that the progesterone metabolite allopregnanolone reduces the brain’s response to corticotropin-releasing factor (CRF), a peptide hormone that plays an important role in the stress response in animals. The finding, which was reported in the Nov. 10, 2004 edition of the Journal of Neuroscience, could provide a new drug target for treating anxiety and depression in women.

In the study, Emory researchers Donna Toufexis, PhD, Michael Davis, PhD and Carrie Davis, BS, and Alexis Hammond, BS, of Spelman College, compared how female rats with different levels of the sex hormones, estrogen and progesterone, reacted to loud noises after injections of CRF into the brain’s lateral ventricles. CRF injections usually increase the "acoustic startle response" in this test used to gauge stress and anxiety, a phenomenon called CRF-enhanced startle.

In the first experiment, the scientists compared acoustic startle responses after CRF injection in an estrogen-only group, an estrogen-plus-progesterone group and a control group that did not receive any sex hormones. All the rats lacked ovaries and the ability to produce sex hormones naturally. Acoustic startle response was unaffected in the estrogen-only group and the control group. In the estrogen-plus-progesterone group, however, CRF-enhanced startle was significantly lower than in the other groups.

In another set of experiments, the researchers discovered that lactating female rats with naturally high levels of progesterone had markedly lower CRF-enhanced startle responses compared to virgin females with intact ovaries. "Findings from theses initial experiments pointed toward the conclusion that progesterone inhibits the effect of CRF on the acoustic startle response," said Toufexis.

To test this hypothesis, the researchers gave only progesterone to female rats lacking ovaries, then compared the acoustic startle response to female rats without ovaries injected with corn oil. The progesterone group displayed significantly lower CRF-enhanced startle responses. When ovariectomized females were tested with allopregnanolone alone it also reduced CRF-enahnced startle.

In a final experiment, the scientists compared the effects on females that received progesterone with those that received medroxy-progesterone, an artificial progestin that binds to progesterone receptors but does not metabolize into the progesterone metabolite allopregnanolone. Only natural progesterone reduced CRF-enhanced startle.

Previous studies have determined that allopregnanolone enhances the activity of GABA, the main inhibitory neurotransmitter in the central nervous system, at its receptors throughout the brain. This mechanism, Toufexis said, likely accounts for progesterone’s blunting effect on the brain’s stress system.

Findings from the study correlate with clinical evidence that some people suffering from depression or anxiety have low allopregnanolone levels that normalize after treatment with anti-depressant medications.

"New drugs could potentially be developed that mimic the effect of allopregnanolone on the GABA receptor, providing a new approach for controlling mood disorders in women," said Toufexis. "The next step is to determine where exactly allopregnanolone is working in the brain to reduce the effect of CRF."

Holly Korschun | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>