Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


10 Million Euro Technology Project Makes Europe a leader in Biocrystallography


A project to create a common platform throughout Europe for researchers working in the field of ‘biological crystallography’ is underway thanks to a grant of 10 million euros from the EU’s 6th Framework Programme (FP6).

The BIOXHIT (Biocrystallography on a Highly Integrated Technology Platform) project plans to integrate and further develop the best of current technologies at major European centres for research in structural biology. It will then weave them into a single standardised platform, combining a strongly focused research programme with networking, training and mobility of staff under a single and efficient management structure.

Biological crystallography aims to create precise, three-dimensional “architectural” models of biological molecules. Without such models at hand, it is almost impossible to understand biological processes - for example, the way proteins and other molecules behave in cells - or to design new drugs that will affect their functions. The most common method for obtaining such three-dimensional models is to bombard crystallised proteins with high-powered X-rays generated at huge synchrotron facilities.

“The components necessary to solve molecular structures are already in place,” says Dr. Kim Henrick from the European Bioinformatics Institute (EMBL-EBI) in Hinxton, one of the leading UK project partners. “However these tools were not originally designed for the high-throughput work required today because of the number of molecules discovered in the many genome sequencing projects. Each step of three-dimensional analysis is at a different state at each facility. This major grant will support the development and the integration of the best technology at each step, and then spread that across all of the sites.”

“One immediate effect of BIOXHIT will be a significant reduction in the time involved in obtaining each structure. Robots, for example, can perform tasks automatically, quickly, and at a consistent and high precision, replacing time-consuming manual steps. The project specifically calls for improvements in the process by which samples are handled, the equipment needed to detect X-ray patterns, and the computers and software needed to model structures. A result of this will be to attract more researchers to work on protein structures.”

Training activities are a cornerstone of the project - being funded under the thematic area ‘Life sciences, genomics and biotechnology for health’ of FP6 - with over 20 partners throughout Europe. A number of Training, Implementation and Dissemination centers will be created outside the participating laboratories to disseminate the know-how. A proactive training effort will take place at synchrotron facilities, and then be spread to satellite centres to disseminate biocrystallography technologies to local European communities.

“Biocrystallography is a complex area that used to be limited to a small number of specialists”, says Claire Horton, FP6UK National Contact Point for Life sciences, genomics and biotechnology for health. “This has now changed and we have researchers in all areas of biology who want to solve molecular structures. BIOXHIT not only make this very user friendly but it will also allow them to send samples and work remotely.”

“The current Framework Programme (FP6) runs until 2006 and organisations wanting free information on how to access some of the €19bn available should log on to or call central telephone support on 0870 600 6080.”

Dave Sanders | alfa
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>