Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asthma gene clusters identified

08.02.2005


Findings could lead to new treatment based on individual genetic profiles



Children who suffer from acute asthma attacks share a genetic profile that appears to be unique to these children, according to a new study by researchers at Cincinnati Children’s Hospital Medical Center. The discovery opens the door to the possibility of designing treatments specifically tailored to children who suffer from the severest forms of asthma. The findings appear in the Feb. 10 issue of the Journal of Allergy and Clinical Immunology.

The study is based on an Affymetrix "GeneChip" analysis of RNA isolated from the nasal epithelium of children who have an acute case of asthma or asthma stabilized with medication. The analysis revealed two distinct gene expression profiles in these groups of children, according to Gurjit K. Khurana Hershey, MD, PhD, director of the Center for Translational Research in Asthma and Allergy at Cincinnati Children’s and senior author of the study.


"We found that children who were having an acute asthma attack had a gene expression profile that was clearly different from those seen in someone with stable (controlled) asthma. The amazing thing was that the gene expression profiles were consistent across patients, despite the likely differences with respect to the cause of asthma," she said.

Asthma is the most common chronic disease of childhood affecting 20 million Americans, according the Centers for Disease Control. Experts know that environmental factors can lead to asthmatic conditions in children, but they also know that genetics contributes to susceptibility. There are no cures for asthma, but it can be controlled with treatment.

To date, researchers have identified individual genes involved in asthma, but this is the first time that clusters of known genes have been identified as being activated in acute forms of childhood asthma.

Dr. Hershey said the findings open the door to the possibility of developing treatments based on the unique genetic profile of patients. For example, specific therapies for acute asthma could be targeted to genes that are seen in acute, but not stable asthma. Also, in addition to differentiating between an acute and stable asthma attack, the genetic profile may be useful in identifying an imminent asthma attack.

Researchers examined 54,675 genes. They discovered eight gene clusters in all, consisting of 161 genes. At least one cluster was identified that was comprised of genes active in acute asthma, but not stable asthma. They also identified gene clusters that were active in stable asthma, but not the acute form of the disease.

"Now that we know what genes are turned on during an asthma attack, we will conduct studies to see if this genetic profile can be used to customize care. The current methods of treatment primarily consist of anti-inflammatory drugs, which may not be optimal for acute attacks," Dr. Hershey said.

Previous studies using microarray technology have been conducted using RNA from adults with asthma, but this approach has not been successfully used in human studies involving children with asthma. In pediatrics, it is difficult to obtain tissue in sufficient quantities for analysis, especially during an asthma attack. But because asthma begins in childhood, the genes identified in adults may not reflect genes involved in childhood asthma, she said.

This study exclusively focused on genes associated with epithelial cells. Genes associated with mucosa and underlying cells are likely to be involved as well.

Dr. Hershey is expanding her research in cooperation with the Computational Medicine Center (CMC), a research partnership with Cincinnati Children’s and the University of Cincinnati College of Medicine. The center specializes is combining computational resources with medicine and genetics in order to customize care for patients based on the patient’s individual genetic makeup.

"Dr. Hershey’s research is a good example of research that we believe will benefit patients, based on the use of novel algorithms and analysis from computational medicine. In this study, we show that asthma is controlled by two different genetic profiles. Now, in computational medicine, we will combine all of our clinical knowledge of disease with information from genetic and genomic data analyses. This, in turn, will lead to customized care based on a patient’s personal needs," according to Bruce Aronow, PhD, co-director of the CMC and co-author of the study.

"Our ultimate goal is to provide physicians the data they need to prescribe the most effective medications, discover new therapies and to help prevent disease," he said.

Ultimately, Dr. Hershey’s goal would be to identify gene profiles that are expressed during asthma that are exacerbated by different factors, such as exercise, viral infection or allergic triggers. In doing so, physicians will be in a better position to assess and treat a patient’s asthma with greater precision.

"As we learn more about disease and how patients respond to treatment, we will eventually be able to develop customized therapy for patients with different gene expression profiles," she said.

Amy Reyes | EurekAlert!
Further information:
http://www.cchmc.org
http://www.cincinnatichildrens.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>