Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cricket’s finicky mating behavior boosts biodiversity

07.02.2005


Speedy speciation curbs courtship options, says Nature article

Biologists at Lehigh University and the University of Maryland have identified a cricket living in Hawaii’s forests as the world’s fastest-evolving invertebrate. Finicky mating behavior appears to be the driving force behind the speedy speciation of the Laupala cricket, the scientists wrote in the Jan. 27 issue of Nature magazine.

Females in the Laupala genus detect tiny differences in the pulse rates of male courtship songs, which differ from one Laupala species to the next. They refuse to mate with males of other species, thus promoting the formation of new species.



The scientists say their findings shed light on the role of individual choices in the evolution of species and the growth of biodiversity. "Animals with nervous systems and brains have preferences and can make choices," says Tamra Mendelson, an evolutionary biologist at Lehigh. "Changes in these preferences and choices appear to drive speciation. "That raises the question: Can something seemingly so individual as a choice have macro-evolutionary consequences in terms of increasing biodiversity? If so, this affects how life on the planet looks. The more species you have, the more complex the ecology is going to be."

In down-to-earth terms:

"What turns a female cricket on? Why does she prefer one pulse rate over another? Whatever the reason, it’s very important that she exercise this preference in order to keep the species distinct."

Mendelson spent three and one-half years studying the Laupala cricket with Kerry Shaw, an evolutionary biologist at the University of Maryland.

The thumbnail-sized Laupala spawns new species at the rate of 4.17 every 1 million years, or more than 10 times faster than the average speciation rate for invertebrates. This rapid evolution is contributing to an "explosion" of new cricket species, especially on Hawaii, the largest and youngest island in the Hawaiian archipelago, say the two scientists. Some 38 different species of the cricket now inhabit the island chain.

Among all animals, say Mendelson and Shaw, only the African cichlid fish spawns new species more quickly. While early biologists based their estimates of speciation rates on morphological, or structural characteristics, Mendelson says, scientists today are more likely to use genetic data to come up with estimates.

Closely related species of Laupala have no clear morphological differences, Mendelson says. They are similar in appearance, they have similar diets, and they live in similar habitats. Members of closely related species possess no physiological differences that would prevent them from interbreeding. But closely related species are distinguished by subtle differences in the pulse rates of male crickets’ simple courtship songs, a secondary sexual trait that plays a large role in mate attraction.

Among all species of Laupala, pulse rates of male courtship songs range from .5 to 4.2 pulses per second. Female crickets can detect these differences, says Mendelson, and they tend to hop towards the pulse rate of their own species and to reject songs sung at a different tempo. The Laupala mating ritual lasts up to eight hours and consists of eight to 15 transfers of spermatophores between male and female, says Mendelson. The final spermatophore, or capsule, to be transferred contains the actual sperm cells that impregnate the female. As a species begins to split into two separate species, says Mendelson, "the songs appear to be the first characteristic that changes."

During the early part of the speciation process, says Mendelson, crickets of the two emerging lines interbreed. After a point, however, members of the two distinct species no longer mate with each other. This discovery led Mendelson to name one of her graduate-school papers after the pop song "Will You Still Love Me Tomorrow?" The Nature article was given the more conservative title of "Rapid Speciation in an Arthropod."

"Over time," says Mendelson, "lineages - species that have split - cease to recognize each other as mates. Although the ancestors recognized each other as mates, the descendants no longer do because of evolutionary change. In the case of Laupala, members of the two species are physiologically capable of mating. But they appear to lose the desire to interbreed before they lose the capacity to interbreed."

Mendelson and Shaw used a technique called amplified fragment-length polymorphisms to establish the evolutionary tree, or phylogeny, of the Laupala. They based their estimates of the cricket’s rate of speciation on the Laupala’s phylogeny and on the age of the islands in the Hawaiian archipelago. The youngest island, Hawaii, was formed less than 500,000 years ago.

Kurt Pfitzer | EurekAlert!
Further information:
http://www.lehigh.edu

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>