Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cricket’s finicky mating behavior boosts biodiversity

07.02.2005


Speedy speciation curbs courtship options, says Nature article

Biologists at Lehigh University and the University of Maryland have identified a cricket living in Hawaii’s forests as the world’s fastest-evolving invertebrate. Finicky mating behavior appears to be the driving force behind the speedy speciation of the Laupala cricket, the scientists wrote in the Jan. 27 issue of Nature magazine.

Females in the Laupala genus detect tiny differences in the pulse rates of male courtship songs, which differ from one Laupala species to the next. They refuse to mate with males of other species, thus promoting the formation of new species.



The scientists say their findings shed light on the role of individual choices in the evolution of species and the growth of biodiversity. "Animals with nervous systems and brains have preferences and can make choices," says Tamra Mendelson, an evolutionary biologist at Lehigh. "Changes in these preferences and choices appear to drive speciation. "That raises the question: Can something seemingly so individual as a choice have macro-evolutionary consequences in terms of increasing biodiversity? If so, this affects how life on the planet looks. The more species you have, the more complex the ecology is going to be."

In down-to-earth terms:

"What turns a female cricket on? Why does she prefer one pulse rate over another? Whatever the reason, it’s very important that she exercise this preference in order to keep the species distinct."

Mendelson spent three and one-half years studying the Laupala cricket with Kerry Shaw, an evolutionary biologist at the University of Maryland.

The thumbnail-sized Laupala spawns new species at the rate of 4.17 every 1 million years, or more than 10 times faster than the average speciation rate for invertebrates. This rapid evolution is contributing to an "explosion" of new cricket species, especially on Hawaii, the largest and youngest island in the Hawaiian archipelago, say the two scientists. Some 38 different species of the cricket now inhabit the island chain.

Among all animals, say Mendelson and Shaw, only the African cichlid fish spawns new species more quickly. While early biologists based their estimates of speciation rates on morphological, or structural characteristics, Mendelson says, scientists today are more likely to use genetic data to come up with estimates.

Closely related species of Laupala have no clear morphological differences, Mendelson says. They are similar in appearance, they have similar diets, and they live in similar habitats. Members of closely related species possess no physiological differences that would prevent them from interbreeding. But closely related species are distinguished by subtle differences in the pulse rates of male crickets’ simple courtship songs, a secondary sexual trait that plays a large role in mate attraction.

Among all species of Laupala, pulse rates of male courtship songs range from .5 to 4.2 pulses per second. Female crickets can detect these differences, says Mendelson, and they tend to hop towards the pulse rate of their own species and to reject songs sung at a different tempo. The Laupala mating ritual lasts up to eight hours and consists of eight to 15 transfers of spermatophores between male and female, says Mendelson. The final spermatophore, or capsule, to be transferred contains the actual sperm cells that impregnate the female. As a species begins to split into two separate species, says Mendelson, "the songs appear to be the first characteristic that changes."

During the early part of the speciation process, says Mendelson, crickets of the two emerging lines interbreed. After a point, however, members of the two distinct species no longer mate with each other. This discovery led Mendelson to name one of her graduate-school papers after the pop song "Will You Still Love Me Tomorrow?" The Nature article was given the more conservative title of "Rapid Speciation in an Arthropod."

"Over time," says Mendelson, "lineages - species that have split - cease to recognize each other as mates. Although the ancestors recognized each other as mates, the descendants no longer do because of evolutionary change. In the case of Laupala, members of the two species are physiologically capable of mating. But they appear to lose the desire to interbreed before they lose the capacity to interbreed."

Mendelson and Shaw used a technique called amplified fragment-length polymorphisms to establish the evolutionary tree, or phylogeny, of the Laupala. They based their estimates of the cricket’s rate of speciation on the Laupala’s phylogeny and on the age of the islands in the Hawaiian archipelago. The youngest island, Hawaii, was formed less than 500,000 years ago.

Kurt Pfitzer | EurekAlert!
Further information:
http://www.lehigh.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>