Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemistry of a cuppa: Helping to digitize the laboratories of tomorrow

04.02.2005


The brewing of tea formed a crucial component of a project which successfully took traditional paper laboratory books and moved them to digital formats. Now that knowledge and experience is being put to use in a subsequent project by University of Southampton computing researchers who are aiming to apply similar techniques to Bioinformatics.

The eScience project, which could revolutionize the way in which scientists share information, is appropriately called myTea. It has received funding of over £200,000 from the EPSRC (Engineering and Physical Sciences Research Council).

The researchers, from the School of Electronics and Computer Science at Southampton, and the University of Manchester, will draw on best practice design methods learned from other eScience projects, specifically, their own SmartTea project, which explored how paper-based information from a chemistry environment could be captured in digital forms. They will also refer to the University of Manchester’s myGrid project in order to design an integrated experiment annotation capture system for bioinformaticians.



The initial exploration of the SmartTea project involved finding common ground which would enable the practices of the scientists, as recorded in their paper lab books, to be understood by the computer researchers. ‘This was crucial for us,’ said dr monica schraefel of the School of Electronics and Computer Science at Southampton. ‘In order to help the scientists record their information digitally, we needed to be able to understand exactly how they described what they were doing in their paper lab books, and what aspects of it they recorded.’

After observing a team of chemists at work in the University labs, the researchers hit on the idea of watching the chemists make tea and record it as if it were an experiment, so that the researchers could understand exactly what was happening in the process on the bench as the scientists recorded it.

Because they knew what was happening during the tea-making, they could understand how the scientists chose to record and classify important aspects of the process, or to ignore things that were not important for the “experiment”.’ ‘So now, instead of writing into a lab book, scientists will write into some other type of hardware, like a tablet PC,’ said monica schraefel. ‘That data is immediately written to a server so it is stored not only locally on the computer, but on the server, and therefore immediately accessible outside the lab and to other scientific communities. ’

Armed with this experience, the researchers are now moving on to the field of Bioinformatics. Although the outcome of providing more effectively organized and accessible information is the same, the problems and processes are different.

‘In the Chemistry lab we took the “book” out of the lab to capture lab processes into digital form,’ said monica schraefel. ‘The issue here is the reverse here: bioinformaticians are already all digital, and ironically, that’s the problem: they create hundreds of files spread across their hard drive for an ongoing experiment, but have no easy way to associate files with an experiment. So, this time, we need to put some of the book back into the process, to help automatically generate a lab book-like view of their work to date, which they can annotate, plug into services like myGrid, or share with colleagues. ‘This work addresses one of the central planks of the eScience project,’ she added ‘—to get data from one scientific community out to another, right away, as soon as it happens.’

Joyce Lewis | alfa
Further information:
http://www.smarttea.org
http://www.ecs.soton.ac.uk

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>