Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemistry of a cuppa: Helping to digitize the laboratories of tomorrow

04.02.2005


The brewing of tea formed a crucial component of a project which successfully took traditional paper laboratory books and moved them to digital formats. Now that knowledge and experience is being put to use in a subsequent project by University of Southampton computing researchers who are aiming to apply similar techniques to Bioinformatics.

The eScience project, which could revolutionize the way in which scientists share information, is appropriately called myTea. It has received funding of over £200,000 from the EPSRC (Engineering and Physical Sciences Research Council).

The researchers, from the School of Electronics and Computer Science at Southampton, and the University of Manchester, will draw on best practice design methods learned from other eScience projects, specifically, their own SmartTea project, which explored how paper-based information from a chemistry environment could be captured in digital forms. They will also refer to the University of Manchester’s myGrid project in order to design an integrated experiment annotation capture system for bioinformaticians.



The initial exploration of the SmartTea project involved finding common ground which would enable the practices of the scientists, as recorded in their paper lab books, to be understood by the computer researchers. ‘This was crucial for us,’ said dr monica schraefel of the School of Electronics and Computer Science at Southampton. ‘In order to help the scientists record their information digitally, we needed to be able to understand exactly how they described what they were doing in their paper lab books, and what aspects of it they recorded.’

After observing a team of chemists at work in the University labs, the researchers hit on the idea of watching the chemists make tea and record it as if it were an experiment, so that the researchers could understand exactly what was happening in the process on the bench as the scientists recorded it.

Because they knew what was happening during the tea-making, they could understand how the scientists chose to record and classify important aspects of the process, or to ignore things that were not important for the “experiment”.’ ‘So now, instead of writing into a lab book, scientists will write into some other type of hardware, like a tablet PC,’ said monica schraefel. ‘That data is immediately written to a server so it is stored not only locally on the computer, but on the server, and therefore immediately accessible outside the lab and to other scientific communities. ’

Armed with this experience, the researchers are now moving on to the field of Bioinformatics. Although the outcome of providing more effectively organized and accessible information is the same, the problems and processes are different.

‘In the Chemistry lab we took the “book” out of the lab to capture lab processes into digital form,’ said monica schraefel. ‘The issue here is the reverse here: bioinformaticians are already all digital, and ironically, that’s the problem: they create hundreds of files spread across their hard drive for an ongoing experiment, but have no easy way to associate files with an experiment. So, this time, we need to put some of the book back into the process, to help automatically generate a lab book-like view of their work to date, which they can annotate, plug into services like myGrid, or share with colleagues. ‘This work addresses one of the central planks of the eScience project,’ she added ‘—to get data from one scientific community out to another, right away, as soon as it happens.’

Joyce Lewis | alfa
Further information:
http://www.smarttea.org
http://www.ecs.soton.ac.uk

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>