Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemistry of a cuppa: Helping to digitize the laboratories of tomorrow

04.02.2005


The brewing of tea formed a crucial component of a project which successfully took traditional paper laboratory books and moved them to digital formats. Now that knowledge and experience is being put to use in a subsequent project by University of Southampton computing researchers who are aiming to apply similar techniques to Bioinformatics.

The eScience project, which could revolutionize the way in which scientists share information, is appropriately called myTea. It has received funding of over £200,000 from the EPSRC (Engineering and Physical Sciences Research Council).

The researchers, from the School of Electronics and Computer Science at Southampton, and the University of Manchester, will draw on best practice design methods learned from other eScience projects, specifically, their own SmartTea project, which explored how paper-based information from a chemistry environment could be captured in digital forms. They will also refer to the University of Manchester’s myGrid project in order to design an integrated experiment annotation capture system for bioinformaticians.



The initial exploration of the SmartTea project involved finding common ground which would enable the practices of the scientists, as recorded in their paper lab books, to be understood by the computer researchers. ‘This was crucial for us,’ said dr monica schraefel of the School of Electronics and Computer Science at Southampton. ‘In order to help the scientists record their information digitally, we needed to be able to understand exactly how they described what they were doing in their paper lab books, and what aspects of it they recorded.’

After observing a team of chemists at work in the University labs, the researchers hit on the idea of watching the chemists make tea and record it as if it were an experiment, so that the researchers could understand exactly what was happening in the process on the bench as the scientists recorded it.

Because they knew what was happening during the tea-making, they could understand how the scientists chose to record and classify important aspects of the process, or to ignore things that were not important for the “experiment”.’ ‘So now, instead of writing into a lab book, scientists will write into some other type of hardware, like a tablet PC,’ said monica schraefel. ‘That data is immediately written to a server so it is stored not only locally on the computer, but on the server, and therefore immediately accessible outside the lab and to other scientific communities. ’

Armed with this experience, the researchers are now moving on to the field of Bioinformatics. Although the outcome of providing more effectively organized and accessible information is the same, the problems and processes are different.

‘In the Chemistry lab we took the “book” out of the lab to capture lab processes into digital form,’ said monica schraefel. ‘The issue here is the reverse here: bioinformaticians are already all digital, and ironically, that’s the problem: they create hundreds of files spread across their hard drive for an ongoing experiment, but have no easy way to associate files with an experiment. So, this time, we need to put some of the book back into the process, to help automatically generate a lab book-like view of their work to date, which they can annotate, plug into services like myGrid, or share with colleagues. ‘This work addresses one of the central planks of the eScience project,’ she added ‘—to get data from one scientific community out to another, right away, as soon as it happens.’

Joyce Lewis | alfa
Further information:
http://www.smarttea.org
http://www.ecs.soton.ac.uk

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>