Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Substance protects resilient staph bacteria


Researchers have identified a promising new target in their fight against a dangerous bacterium that sickens people in hospitals, especially people who receive medical implants such as catheters, artificial joints and heart valves.

A substance found on the surface of Staphylococcus epidermidis has, for the first time, been shown to protect the harmful pathogen from natural human defense mechanisms that would otherwise kill the bacteria, according to scientists at the Rocky Mountain Laboratories (RML), part of the National Institute of Allergy and Infectious Diseases (NIAID) of the National Institutes of Health.

S. epidermidis is one of several hard-to-treat infectious agents that can be transmitted to patients in hospitals via contaminated medical implants. The new report concludes that the substance--known as poly-gamma-DL-glutamic acid, or PGA--must be present for S. epidermidis to survive on medical implants. S. epidermidis infections are rarely fatal but can lead to serious conditions such as sepsis (widespread toxic infection) and endocarditis (inflammation of the lining of the heart and its valves).

Because of the ability of PGA to promote resistance to innate immune defenses, learning more about the protein could lead to new treatments for S. epidermidis and related Staphylococcal pathogens that also produce PGA, according to the RML scientists. In addition, they also are hoping that similar research under way elsewhere on Bacillus anthracis--the infectious agent of anthrax, which also produces PGA--will complement their work.

The report of the study, led by Michael Otto, Ph.D., will appear in the March edition of The Journal of Clinical Investigation and is now available online. Collaborators, all scientists at RML in Hamilton, MT, include Stanislava Kocianova, Ph.D.; Cuong Vuong, Ph.D.; Yufeng Yao, Ph.D.; Jovanka Voyich, Ph.D.; Elizabeth Fischer, M.A.; and Frank DeLeo, Ph.D.

"Nosocomial, or hospital-acquired, infections are a worrisome public health problem made worse by the increase in antibiotic resistance," says NIAID Director Anthony S. Fauci, M.D. "This research has initiated a promising new approach that could result in the development of better ways to prevent the spread of many different staph infections that can be acquired in health care settings."

The PGA discoveries came during Dr. Otto’s research of how Staphylococcal bacteria biofilms contribute to evading human immune defenses. Biofilms are protective cell-surface structures. Biofilm formation does not depend on PGA, but other research in Dr. Otto’s laboratory has indicated that PGA production is greater when a biofilm is present. Further, Dr. Otto says all 74 strains of S. epidermidis that his group tested also produced PGA, as did six other genetically related Staphylococcus pathogens. "This could be very important to vaccine development because the PGA is present in every strain of the organism," Dr. Otto says. "If a vaccine can be developed to negate the effect of the PGA, it could be highly successful against all pathogens in which PGA is a basis for disease development, such as Staph and anthrax."

The group used genetic and biochemical analyses to show that PGA is produced in S. epidermidis. They then used three S. epidermidis strains--one natural, one altered to eliminate PGA production and one altered to produce excess PGA--to show that PGA protects S. epidermidis from innate immune defense, human antibiotic compounds and salt concentrations similar to levels found on human skin. Dr. Otto’s group also used mice fitted with catheters to demonstrate that the S. epidermidis strain deficient of PGA was not able to cause infection while the other strains containing PGA did.

Ken Pekoc | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>