Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Effective Cancer Treatments Follow the Clock

04.02.2005


Oncologists have long thought that cancer treatments tend to be more effective at certain times of day. But they have been unable to turn this knowledge into practice, because they did not understand the phenomenon well enough. Now, researchers have discovered a molecular mechanism that explains why sensitivity to anti-cancer drugs changes with the clock. They said their findings could lead to new drug treatments that may be more effective because they harness the power and precision of the body’s internal clock.



The research team, which included senior author Joseph S. Takahashi, a Howard Hughes Medical Institute investigator at Northwestern University, and senior author Marina P. Antoch at the Cleveland Clinic Lerner Research Institute in Cleveland, Ohio, published its findings February 1, 2005, in the early online edition of the Proceedings of the National Academy of Sciences.

In experiments, which were conducted in mice, the scientists found that the body’s internal biological clock affects the survival of immune cells that are targets of the anti-cancer drug cyclophosphamide (CY). “We became interested in examining this issue because there is a long history of knowledge that chemotherapeutic agents produce different mortality and morbidity at different times of the day,” said Takahashi. The initial experiments with normal mice, performed by Antoch during her tenure in Takahashi’s lab, confirmed that animals treated with CY survived better when they received treatment in late afternoon than those whose treatments were initiated early in the morning. Antoch further extended these original findings after she moved to Cleveland and established her research program in the Department of Cancer Biology at the Cleveland Clinic Foundation.


To examine the mechanism for this difference, Antoch and her colleagues used mice that genetically lack different components of the body’s internal clock. “Knowing the molecular mechanism of internal clock function lets us make some important predictions of how these mice may respond to drug treatment,” said Antoch. “Thus, defects in Clock or Bmal1 genes, which essentially damp the cycles of the internal clock may produce very different effect when compared to defects in Cryptochrome gene, which, in contrast, `jams’ the circadian clock at the most active point in its cycle.”

Biological clocks function in the brain as well as lung, liver, heart and skeletal muscles. They operate on a 24-hour, circadian (Latin for "about a day") cycle that governs functions like sleeping and waking, rest and activity, fluid balance, body temperature, cardiac output, oxygen consumption and endocrine gland secretion.

In their experiments, the researchers measured the animals’ body weight as an indicator of response to the anti-cancer drug. They discovered that Clock-mutant and Bmal1-knockout mice showed high sensitivity to the drug at any time it was administered — as if the drug were administered early in the morning or late at night. In contrast, the Cryptochrome knockout mice showed more resistance to the drug at all times than did normal mice.

The researchers then tested whether this effect might be due to differences in the metabolic activation of the anti-cancer drug, but found essentially none. “This was a real surprise, because some of the enzymes involved in activating CY in the liver show circadian rhythms,” said Takahashi. “We thought that the liver might be activating the drug more strongly at some times, or detoxifying it less effectively, or both.”

However, when the researchers analyzed the activity of the knockout animals’ immune system B cells, they found evidence that the activity of the Clock and Bmal1 genes determined the cells’ sensitivity to CY.

“Thus, this paper gives us specific mechanistic insight into the role of circadian rhythms in sensitivity to such drugs,” said Takahashi. “This is not some vague metabolic difference between day and night. This is a tangible difference in the immune system that influences sensitivity.”

The findings may well extend to the effects of other anti-cancer drugs, as well as to radiation therapy and may provide a rationale for adjusting the timing of chemotherapy to make it less toxic. “There is one more very important clinical application of these findings,” Antoch said, “as they provide a rationale for developing drugs that can enhance the therapeutic index through the modulation of the circadian clock. We have already started screening sets of chemical compounds for their ability to affect this function. We are also planning additional studies to discover the molecular signals from the circadian machinery to the immune system that might prove to be useful drug targets.”

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>