Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Effective Cancer Treatments Follow the Clock

04.02.2005


Oncologists have long thought that cancer treatments tend to be more effective at certain times of day. But they have been unable to turn this knowledge into practice, because they did not understand the phenomenon well enough. Now, researchers have discovered a molecular mechanism that explains why sensitivity to anti-cancer drugs changes with the clock. They said their findings could lead to new drug treatments that may be more effective because they harness the power and precision of the body’s internal clock.



The research team, which included senior author Joseph S. Takahashi, a Howard Hughes Medical Institute investigator at Northwestern University, and senior author Marina P. Antoch at the Cleveland Clinic Lerner Research Institute in Cleveland, Ohio, published its findings February 1, 2005, in the early online edition of the Proceedings of the National Academy of Sciences.

In experiments, which were conducted in mice, the scientists found that the body’s internal biological clock affects the survival of immune cells that are targets of the anti-cancer drug cyclophosphamide (CY). “We became interested in examining this issue because there is a long history of knowledge that chemotherapeutic agents produce different mortality and morbidity at different times of the day,” said Takahashi. The initial experiments with normal mice, performed by Antoch during her tenure in Takahashi’s lab, confirmed that animals treated with CY survived better when they received treatment in late afternoon than those whose treatments were initiated early in the morning. Antoch further extended these original findings after she moved to Cleveland and established her research program in the Department of Cancer Biology at the Cleveland Clinic Foundation.


To examine the mechanism for this difference, Antoch and her colleagues used mice that genetically lack different components of the body’s internal clock. “Knowing the molecular mechanism of internal clock function lets us make some important predictions of how these mice may respond to drug treatment,” said Antoch. “Thus, defects in Clock or Bmal1 genes, which essentially damp the cycles of the internal clock may produce very different effect when compared to defects in Cryptochrome gene, which, in contrast, `jams’ the circadian clock at the most active point in its cycle.”

Biological clocks function in the brain as well as lung, liver, heart and skeletal muscles. They operate on a 24-hour, circadian (Latin for "about a day") cycle that governs functions like sleeping and waking, rest and activity, fluid balance, body temperature, cardiac output, oxygen consumption and endocrine gland secretion.

In their experiments, the researchers measured the animals’ body weight as an indicator of response to the anti-cancer drug. They discovered that Clock-mutant and Bmal1-knockout mice showed high sensitivity to the drug at any time it was administered — as if the drug were administered early in the morning or late at night. In contrast, the Cryptochrome knockout mice showed more resistance to the drug at all times than did normal mice.

The researchers then tested whether this effect might be due to differences in the metabolic activation of the anti-cancer drug, but found essentially none. “This was a real surprise, because some of the enzymes involved in activating CY in the liver show circadian rhythms,” said Takahashi. “We thought that the liver might be activating the drug more strongly at some times, or detoxifying it less effectively, or both.”

However, when the researchers analyzed the activity of the knockout animals’ immune system B cells, they found evidence that the activity of the Clock and Bmal1 genes determined the cells’ sensitivity to CY.

“Thus, this paper gives us specific mechanistic insight into the role of circadian rhythms in sensitivity to such drugs,” said Takahashi. “This is not some vague metabolic difference between day and night. This is a tangible difference in the immune system that influences sensitivity.”

The findings may well extend to the effects of other anti-cancer drugs, as well as to radiation therapy and may provide a rationale for adjusting the timing of chemotherapy to make it less toxic. “There is one more very important clinical application of these findings,” Antoch said, “as they provide a rationale for developing drugs that can enhance the therapeutic index through the modulation of the circadian clock. We have already started screening sets of chemical compounds for their ability to affect this function. We are also planning additional studies to discover the molecular signals from the circadian machinery to the immune system that might prove to be useful drug targets.”

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>