Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at UT Southwestern discover new function for old enzyme

04.02.2005


In a step toward understanding the early evolution of the cell, researchers at UT Southwestern Medical Center have discovered that an enzyme important in the production of energy also protects the mitochondria, the energy factory itself.


The enzyme, called aconitase, is a well-known component of the pathway in cells that produces energy. But in a study using baker’s yeast, Dr. Ronald Butow, professor of molecular biology, has shown a new function for the enzyme – keeping the mitochondrial genome intact.

The study is available online and in the Feb. 4 edition of the journal Science.

Mitochondria are the powerhouses of cells and create energy for all cellular processes. It is thought that mitochondria are descended from bacteria that originally took up residence in early cells. Through elements of a little-understood symbiotic relationship between the bacteria and the cell, the bacteria lost their independence and evolved into an organelle that provides energy for the cell. The relationship between mitochondria and the cell make each vital to the other’s survival, and may explain a key biological event – the development of an efficient energy producer to fuel the evolution of more complex life forms.



Because of their supposed microbial origins, mitochondria have their own DNA, which is separate from the DNA in the cell nucleus. Cells that have lost their mitochondrial DNA do not pass on working mitochondria when they divide. Without working mitochondria, cells cannot produce energy efficiently. Events that lead to mitochondrial DNA defects are associated with neuromuscular diseases and premature aging disorders in humans.

"Mitochondrial DNA was discovered in the 1960s, and we still do not know much about how it is organized, packaged or inherited," said Dr. Butow. "What is really amazing is that we very recently discovered proteins associated with mitochondrial DNA that were thought to only have metabolic functions, and that aconitase, one of these proteins, is essential for mitochondrial DNA maintenance and inheritance, a new function independent of its normal enzyme activity."

To determine the region of aconitase that keeps mitochondrial DNA intact, Dr. Butow’s group made mutations in parts of the enzyme that are important for its catalytic activity. In spite of these mutations, aconitase still functions in the maintenance of mitochondrial DNA. The researchers concluded that aconitase’s role in protecting the mitochondrial genome is independent of its role in making energy, giving a new face to the long-known enzyme.

Genes in the cell’s nucleus code for aconitase, and once made, the protein is shuttled to the mitochondria to serve its functions. According to Dr. Butow, aconitase may participate in an internal cell communication system known as retrograde signaling.

Retrograde signaling serves as a status-check in cells, where the mitochondria signal to the nucleus if something is wrong and when things are better again. By protecting the mitochondrial DNA, aconitase may be part of the "A-OK" signal after the cell experiences stress.

The role of aconitase in stabilizing the mitochondrial genome may be an evolutionary adaptation where the mitochondria co-opts a nuclearly encoded protein to ensure survival of its genome, said Dr. Butow. "The cell takes care of the nucleus, because that is where its genome is," he said, "but the mitochondrial genome is not looked after. It has to take care of itself."

Other UT Southwestern researchers who participated in the study are lead author Dr. Xin Jie Chen, assistant professor of molecular biology, and Xiaowen Wang, research assistant in molecular biology. Dr. Brett A. Kaufmann, a former graduate student at UT Southwestern now with the Montreal Neurological Institute, also contributed.

Megha Satyanarayana | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>