Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at UT Southwestern discover new function for old enzyme

04.02.2005


In a step toward understanding the early evolution of the cell, researchers at UT Southwestern Medical Center have discovered that an enzyme important in the production of energy also protects the mitochondria, the energy factory itself.


The enzyme, called aconitase, is a well-known component of the pathway in cells that produces energy. But in a study using baker’s yeast, Dr. Ronald Butow, professor of molecular biology, has shown a new function for the enzyme – keeping the mitochondrial genome intact.

The study is available online and in the Feb. 4 edition of the journal Science.

Mitochondria are the powerhouses of cells and create energy for all cellular processes. It is thought that mitochondria are descended from bacteria that originally took up residence in early cells. Through elements of a little-understood symbiotic relationship between the bacteria and the cell, the bacteria lost their independence and evolved into an organelle that provides energy for the cell. The relationship between mitochondria and the cell make each vital to the other’s survival, and may explain a key biological event – the development of an efficient energy producer to fuel the evolution of more complex life forms.



Because of their supposed microbial origins, mitochondria have their own DNA, which is separate from the DNA in the cell nucleus. Cells that have lost their mitochondrial DNA do not pass on working mitochondria when they divide. Without working mitochondria, cells cannot produce energy efficiently. Events that lead to mitochondrial DNA defects are associated with neuromuscular diseases and premature aging disorders in humans.

"Mitochondrial DNA was discovered in the 1960s, and we still do not know much about how it is organized, packaged or inherited," said Dr. Butow. "What is really amazing is that we very recently discovered proteins associated with mitochondrial DNA that were thought to only have metabolic functions, and that aconitase, one of these proteins, is essential for mitochondrial DNA maintenance and inheritance, a new function independent of its normal enzyme activity."

To determine the region of aconitase that keeps mitochondrial DNA intact, Dr. Butow’s group made mutations in parts of the enzyme that are important for its catalytic activity. In spite of these mutations, aconitase still functions in the maintenance of mitochondrial DNA. The researchers concluded that aconitase’s role in protecting the mitochondrial genome is independent of its role in making energy, giving a new face to the long-known enzyme.

Genes in the cell’s nucleus code for aconitase, and once made, the protein is shuttled to the mitochondria to serve its functions. According to Dr. Butow, aconitase may participate in an internal cell communication system known as retrograde signaling.

Retrograde signaling serves as a status-check in cells, where the mitochondria signal to the nucleus if something is wrong and when things are better again. By protecting the mitochondrial DNA, aconitase may be part of the "A-OK" signal after the cell experiences stress.

The role of aconitase in stabilizing the mitochondrial genome may be an evolutionary adaptation where the mitochondria co-opts a nuclearly encoded protein to ensure survival of its genome, said Dr. Butow. "The cell takes care of the nucleus, because that is where its genome is," he said, "but the mitochondrial genome is not looked after. It has to take care of itself."

Other UT Southwestern researchers who participated in the study are lead author Dr. Xin Jie Chen, assistant professor of molecular biology, and Xiaowen Wang, research assistant in molecular biology. Dr. Brett A. Kaufmann, a former graduate student at UT Southwestern now with the Montreal Neurological Institute, also contributed.

Megha Satyanarayana | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>