Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at UT Southwestern discover new function for old enzyme

04.02.2005


In a step toward understanding the early evolution of the cell, researchers at UT Southwestern Medical Center have discovered that an enzyme important in the production of energy also protects the mitochondria, the energy factory itself.


The enzyme, called aconitase, is a well-known component of the pathway in cells that produces energy. But in a study using baker’s yeast, Dr. Ronald Butow, professor of molecular biology, has shown a new function for the enzyme – keeping the mitochondrial genome intact.

The study is available online and in the Feb. 4 edition of the journal Science.

Mitochondria are the powerhouses of cells and create energy for all cellular processes. It is thought that mitochondria are descended from bacteria that originally took up residence in early cells. Through elements of a little-understood symbiotic relationship between the bacteria and the cell, the bacteria lost their independence and evolved into an organelle that provides energy for the cell. The relationship between mitochondria and the cell make each vital to the other’s survival, and may explain a key biological event – the development of an efficient energy producer to fuel the evolution of more complex life forms.



Because of their supposed microbial origins, mitochondria have their own DNA, which is separate from the DNA in the cell nucleus. Cells that have lost their mitochondrial DNA do not pass on working mitochondria when they divide. Without working mitochondria, cells cannot produce energy efficiently. Events that lead to mitochondrial DNA defects are associated with neuromuscular diseases and premature aging disorders in humans.

"Mitochondrial DNA was discovered in the 1960s, and we still do not know much about how it is organized, packaged or inherited," said Dr. Butow. "What is really amazing is that we very recently discovered proteins associated with mitochondrial DNA that were thought to only have metabolic functions, and that aconitase, one of these proteins, is essential for mitochondrial DNA maintenance and inheritance, a new function independent of its normal enzyme activity."

To determine the region of aconitase that keeps mitochondrial DNA intact, Dr. Butow’s group made mutations in parts of the enzyme that are important for its catalytic activity. In spite of these mutations, aconitase still functions in the maintenance of mitochondrial DNA. The researchers concluded that aconitase’s role in protecting the mitochondrial genome is independent of its role in making energy, giving a new face to the long-known enzyme.

Genes in the cell’s nucleus code for aconitase, and once made, the protein is shuttled to the mitochondria to serve its functions. According to Dr. Butow, aconitase may participate in an internal cell communication system known as retrograde signaling.

Retrograde signaling serves as a status-check in cells, where the mitochondria signal to the nucleus if something is wrong and when things are better again. By protecting the mitochondrial DNA, aconitase may be part of the "A-OK" signal after the cell experiences stress.

The role of aconitase in stabilizing the mitochondrial genome may be an evolutionary adaptation where the mitochondria co-opts a nuclearly encoded protein to ensure survival of its genome, said Dr. Butow. "The cell takes care of the nucleus, because that is where its genome is," he said, "but the mitochondrial genome is not looked after. It has to take care of itself."

Other UT Southwestern researchers who participated in the study are lead author Dr. Xin Jie Chen, assistant professor of molecular biology, and Xiaowen Wang, research assistant in molecular biology. Dr. Brett A. Kaufmann, a former graduate student at UT Southwestern now with the Montreal Neurological Institute, also contributed.

Megha Satyanarayana | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht What Makes Stem Cells into Perfect Allrounders
27.06.2017 | Universität Zürich

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>