Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers at UT Southwestern discover new function for old enzyme


In a step toward understanding the early evolution of the cell, researchers at UT Southwestern Medical Center have discovered that an enzyme important in the production of energy also protects the mitochondria, the energy factory itself.

The enzyme, called aconitase, is a well-known component of the pathway in cells that produces energy. But in a study using baker’s yeast, Dr. Ronald Butow, professor of molecular biology, has shown a new function for the enzyme – keeping the mitochondrial genome intact.

The study is available online and in the Feb. 4 edition of the journal Science.

Mitochondria are the powerhouses of cells and create energy for all cellular processes. It is thought that mitochondria are descended from bacteria that originally took up residence in early cells. Through elements of a little-understood symbiotic relationship between the bacteria and the cell, the bacteria lost their independence and evolved into an organelle that provides energy for the cell. The relationship between mitochondria and the cell make each vital to the other’s survival, and may explain a key biological event – the development of an efficient energy producer to fuel the evolution of more complex life forms.

Because of their supposed microbial origins, mitochondria have their own DNA, which is separate from the DNA in the cell nucleus. Cells that have lost their mitochondrial DNA do not pass on working mitochondria when they divide. Without working mitochondria, cells cannot produce energy efficiently. Events that lead to mitochondrial DNA defects are associated with neuromuscular diseases and premature aging disorders in humans.

"Mitochondrial DNA was discovered in the 1960s, and we still do not know much about how it is organized, packaged or inherited," said Dr. Butow. "What is really amazing is that we very recently discovered proteins associated with mitochondrial DNA that were thought to only have metabolic functions, and that aconitase, one of these proteins, is essential for mitochondrial DNA maintenance and inheritance, a new function independent of its normal enzyme activity."

To determine the region of aconitase that keeps mitochondrial DNA intact, Dr. Butow’s group made mutations in parts of the enzyme that are important for its catalytic activity. In spite of these mutations, aconitase still functions in the maintenance of mitochondrial DNA. The researchers concluded that aconitase’s role in protecting the mitochondrial genome is independent of its role in making energy, giving a new face to the long-known enzyme.

Genes in the cell’s nucleus code for aconitase, and once made, the protein is shuttled to the mitochondria to serve its functions. According to Dr. Butow, aconitase may participate in an internal cell communication system known as retrograde signaling.

Retrograde signaling serves as a status-check in cells, where the mitochondria signal to the nucleus if something is wrong and when things are better again. By protecting the mitochondrial DNA, aconitase may be part of the "A-OK" signal after the cell experiences stress.

The role of aconitase in stabilizing the mitochondrial genome may be an evolutionary adaptation where the mitochondria co-opts a nuclearly encoded protein to ensure survival of its genome, said Dr. Butow. "The cell takes care of the nucleus, because that is where its genome is," he said, "but the mitochondrial genome is not looked after. It has to take care of itself."

Other UT Southwestern researchers who participated in the study are lead author Dr. Xin Jie Chen, assistant professor of molecular biology, and Xiaowen Wang, research assistant in molecular biology. Dr. Brett A. Kaufmann, a former graduate student at UT Southwestern now with the Montreal Neurological Institute, also contributed.

Megha Satyanarayana | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>