Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biology in four dimensions

04.02.2005


The factor of time gives scientists insight into cellular machines



Most things that happen in the cell are the work of ’molecular machines’ – complexes of proteins that carry out important cellular functions. Until now, scientists didn’t have a clear idea of when proteins form these machines – are these complexes pre-fabricated or put together on the spot for each specific job? Researchers at the European Molecular Biology Laboratory (EMBL), working closely with scientists from the Technical University of Denmark (DTU), have now answered that question by drawing together many types of data in a fascinating new model. The work is published in this week’s edition of Science.
"Past studies of this type have usually left out a crucial element – time," says EMBL Group Leader Peer Bork. "But now a picture has emerged which is extremely dynamic."

The researchers discovered that in yeast, key components needed to create a machine are produced ahead of time, and kept in stock. When a new machine is needed, a few crucial last pieces are synthesized and then the apparatus is assembled. Holding off on the last components enables the cell to prevent building machines at the wrong times. That’s a different scenario from what happens in bacteria, which usually start production of all the parts, from scratch, whenever they want to get something done.



"We saw a clear pattern as to how the complexes are assembled," says Søren Brunak from DTU. "It’s unusual to find such concrete patterns in biology, compared to physics for example, due to the evolutionary forces that change living systems. But using this new model, the underlying principle became very clear."

The researchers developed the model by combining data from many different studies. First, they analyzed existing protein-protein interaction data to construct a network that traces the pieces of each complex and shows how they interact. Then, to add the dimension of time, they identified genes involved in the cell cycle to find out when certain genes are switched on to produce the proteins that assemble into cellular machines. By overlaying various data sets, the researchers were able to construct a new model for protein-complex interactions.

"In addition to gaining new information about known cellular machines," Bork notes, "we were able to plug in some components whose functions had been unknown. And the same approach could be used to study the dynamic behaviour of other biological systems, including those of humans and animals."

Trista Dawson | EurekAlert!
Further information:
http://www.embl.de

More articles from Life Sciences:

nachricht “Pregnant” Housefly Males Demonstrate the Evolution of Sex Determination
23.05.2017 | Universität Zürich

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>