Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research using mouse models reveals a novel key player in the initiation of colon cancer

04.02.2005


Gastric and colorectal cancers account for more than 1 million deaths worldwide every year and several research groups have been working to identify the molecular events that result in the initiation and progression of these tumors. It has been established that interfering with the function of one gene, called Adenomatous Polyposis Coli (APC) has a profound effect on the cells lining the innermost layer of the colon (called the epithelium) and causes them to lose control over their proliferation leading to tumors.

Now Klaus Kaestner from the University of Pennsylvania School of Medicine has headed a study that identifies another molecular player influencing the initiation of colon cancers. This study will be published in the February 1 issue of the journal Genes and Development.

An animal model with an inactivating mutation within the mouse equivalent of the APC gene displays very similar pathology as seen in human colon cancers and develop tumor growths called polyps in their colons, eventually leading to death. Inactivating the APC gene was found, as in human cells, to cause the accumulation of a protein called beta-catenin in the nuclei of these cells.



Kaestner’s group had earlier published research on a transcription factor called Foxl1 that is also expressed in the colon, but in a different layer of cells, adjacent to the epithelium, called the mesenchyme. They had seen that mice that are deficient for the Foxl1 protein show a similar accumulation of the beta-catenin protein in the epithelium layer, yet they do not get cancers. However, combining the Foxl1 deficiency with an inactive APC gene had drastic outcomes. The group compared animals that were partially deficient for APC (containing one normal copy of the APC gene and one mutant inactive copy) in the presence or absence of Foxl1. Both animals developed tumors, however, in the absence of Foxl1, tumor frequency was more than 7-fold higher.

In addition, the animals developed tumors in the stomach. None of the tumors seen in either case were invasive leading to the conclusion that the Foxl1deficiency affects early stages in tumor formation. Additional analysis revealed that the Foxl1 deficiency affected the onset of tumor formation, accelerating them to arise in 1/3rd of the normal time. The authors examined the integrity of the APC gene in these tumor cells and found that more than ninety per cent of the tumors had lost the normal copy of the APC gene and now were completely deficient.

What is the significance of these results on understanding the initiation of colon cancer? A deficiency of Foxl1 in the mesenchymal layer of the colon leads to altered signaling to the epithelium layer and results in increased cell proliferation and turnover of this layer. In people with a genetic predisposition, like those with Familial Adenomatous Polyposis, or environmental stress that generates a spontaneous mutation in the APC gene, mutations in the Foxl1 gene or its targets may dramatically increase the likelihood that the second normal copy of the APC gene is lost or mutated, leading to the initiation of tumor formation.

This study sets a new paradigm for gastrointestinal tumorigenesis, in that genetic events outside the epithelial layer itself have a profound effect on tumor initiation. Thus it appears likely that this study will foster additional research into other mesenchymal genetic modifiers, and into potential therapeutic approaches that affect the signaling between the two cell layers.

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>