Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacterial spread all down to chance: some strains ‘just the lucky ones’

04.02.2005


Scientists have discovered that factors such as human immunity and drug resistance are less important to the success of bacterial spread than previously thought.



According to research published online this week in Proceedings of the National Academy of Sciences most of the variation in the spread of bacterial pathogens occurs simply by chance.

The team from Imperial College London studied three famously deadly species: Neisseria meningitidis, which causes outbreaks of meningitis; Streptococcus pneumoniae, which kills 1.8 million people around the world every year, and Staphylococcus aureus, which in its drug resistant form is better known as MRSA. They compared the genetic make-up of these bacteria with a computer simulation which allowed them to test various evolutionary scenarios.


They found evidence that bacterial communities mirror the social life of the humans they infect. For example, close family members or friends in the same class at school or nursery are more likely to share an infection due to increased contact. After accounting for these differences in the opportunities for person-to-person spread, the researchers were amazed to find that there was little evidence for differences in the ability of pathogen strains to spread.

Dr Christophe Fraser, from Imperial College London, a Royal Society University Research Fellow and one of the authors, says: “Microbiologists have assumed for some time that some disease strains spread more successfully than others. In fact we found that the variation in the communities we studied could be explained by chance. This was surprising, especially considering all the potential advantages one pathogen can have over another, such as antibiotic resistance and differences in host immunity.”

Dr Bill Hanage, from Imperial College London, and also one of the authors, says: “When we look at a sample and see that some strains are much more common than others, it’s tempting to think that there must be something special about them. In fact, they could just be the lucky ones, and that’s what it looks like here. Most of the variation in the spread of these pathogens can be explained by chance alone.”

Tony Stephenson | alfa
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>