Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene used in brain development can cause childhood brain cancers

03.02.2005


Errant neuro-developmental gene responsive to a potent vitamin A derivative



A gene that’s normally silenced after contributing to brain development was found to be expressed in cells from medulloblastoma, the most common form of pediatric brain malignancy in children, scientists report in an article published in the February 1 issue of the journal Cancer Research.

In their study, the scientists discovered that multiple extra copies of the gene, called OTX2, had been switched back on among tumor cells removed from patients with medulloblastoma brain tumors. In the United States, medulloblastoma accounts for approximately 30 percent of all pediatric brain tumors.


Further, the scientists discovered that a potent derivative of Vitamin A, known as all trans-retinoic acid or ATRA, suppressed growth and induced cell death among the OTX2-laden tumor cells. More than half of medulloblastomas grown in the laboratory responded to ATRA treatment.

"The response that ATRA imposes upon these medulloblastoma brain tumor cell lines suggests that this type of tumor may respond favorably to ATRA-based therapy," said Hai Yan, M.D., Ph.D., the principle investigator of the study at the Brain Tumor Center at the Duke University Medical Center.

"ATRA is already clinically approved for the treatment of acute promyelocytic leukemia. These studies lay the conceptual and practical framework for clinical trials using ATRA in the treatment of a commonly lethal pediatric disease."

Yan said that the OTX2 gene normally contributes to development and growth of certain areas of the brain, such as the cerebellum, but the gene is generally turned off and no longer used after birth.

Using a novel technique that involves snipping apart the entire DNA content in the chromosomes of medulloblastoma cells and then analyzing the quantity of each, Yan and his colleagues detected an abnormally amplified segment among the tumor cells on chromosome 14.

"There was a striking amplification of genetic coding representing a 28-fold increase in base pairs of DNA in that specific region of chromosome 14," Yan said. The researchers identified OTX2 as the only gene contained within the amplified region of the chromosome.

The scientists also determined that 60-70 percent of the medulloblastoma cells were churning out large numbers of messenger RNA specific for OTX2, compared to normal cells which generally show no activity for this gene.

This latter finding suggested another approach, RNA interference, to blocking OTX2 activity. Discovered in the late 90’s, RNA interference or RNAi refers to the introduction of double-stranded RNA (dsRNA) into a cell, where it induces the degradation of complementary messenger RNA, thereby suppressing the gene expression.

"In our studies, we applied several specifically designed RNAi to the tumor cells that expressed OTX2," Yan said. "We then observed that the RNAi knocked down OTX2 expression and killed the tumors cells which expressed OTX2. In contrast, the RNAi did not do any damage to the cells which did not express OTX2."

Among the researchers working with Yan to investigate the OTX2 gene in medulloblastomas were, Chunhui Di, Shaoxi Liao M.D, Ph.D, David C. Adamson, M.D., Ph.D., Timothy J. Parrett, M.D., Daniel K. Broderick, Qun Shi, Roger E. McLendon, M.D., and Darell D. Bigner, M.D., Ph.D. from the Brain Tumor Center, Department of Pathology, Duke University Medical Center, Durham, N.C.; Christoph Lengauer, Ph.D., Jordan M. Cummins, and Victor E.Velculescu, M.D., Ph.D. from The Johns Hopkins University Medical Institutions, Baltimore, Md.; and Daniel W. Fults, M.D. from the University of Utah School of Medicine, Salt Lake City, Utah.

Russell Vanderboom, Ph.D. | EurekAlert!
Further information:
http://www.aacr.org

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>