Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key trigger of opioid withdrawal symptoms found

03.02.2005


Researchers have discovered an important chemical in the brain’s neuronal machinery that triggers some of the withdrawal symptoms of opioid drugs like morphine and heroin.



They believe that drugs to inhibit the chemical--called a transporter--could relieve some of the early physical symptoms of withdrawal, such as teeth-chattering, uncontrolled shaking, and jumpiness. Such drugs could become part of the arsenal of medicines and behavioral techniques aimed at helping addicts kick their habits.

To zero in on the machinery underlying withdrawal symptoms, researchers led by Elena Bagley and Macdonald Christie of the Pain Management Research Institute at Royal North Shore Hospital (a division of the University of Sydney) performed biochemical studies on brain slices from mice that had been treated with morphine. Their objective was to understand what happens to a particular region of the midbrain--called the periaqueductal gray (PAG)--known to be involved in such withdrawal symptoms. Opiate addiction inhibits neuron activity in this region, which alters the neuronal machinery to compensate for this inhibition. Upon opiate withdrawal, the neurons rebound, becoming hyperactive.


The scientists’ analysis revealed that a transporter molecule for the neurotransmitter GABA was responsible for the electrical abnormalities that produce a hyperexcitability in the neurons. Neurotransmitters are the molecular ammunition that one neuron fires at its neighbor to trigger a nerve impulse in the neighbor. Propagation of such nerve impulses through the networks of neurons in the brain is the basis of all neural activity. Transporter molecules are the proteins that retrieve neurotransmitter molecules from the spaces between neurons after they trigger nerve impulse, to reload the neuron for its next signaling burst.

Bagley and her colleagues also discovered that a molecular switch called protein kinase A was part of the triggering machinery involved in activating the abnormal GABA transporter activity.

Importantly, the researchers found that drugs that inhibit either the GABA transporter activity or protein kinase A eliminate the hyperexcitability of the PAG neurons in the mouse brain slices.

The researchers cited other studies showing that treatment with opioids also altered levels of the transporter for the neurotransmitter glutamate, "suggesting that neurotransmitter transporters may prove to be useful targets for management of opioid dependence," they wrote. The researchers also wrote that, since GABA is a neurotransmitter that inhibits nerve impulses, drugs to inhibit the GABA transporter "could produce their therapeutic effect through altering extracellular GABA concentrations as well as directly altering the excitability of GABAergic neurons."

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>