Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy promising for growing tooth-supporting bone

03.02.2005


A University of Michigan research team has found that introducing a growth factor protein into a mouth wound using gene therapy helped generate bone around dental implants, according to a new paper in the February issue of the journal Molecular Therapy.



In a patient with a sizeable mouth wound, replacing a tooth takes more than simply implanting a new one---the patient also needs the bone structure to anchor the new tooth in place. Such reconstructive surgery today involves either taking a bone graft from the patient’s chin or jaw, which leaves a second wound needing to heal, or using donated bone from a tissue bank, which yields unpredictable results.

William Giannobile, professor of periodontics, prevention and geriatrics, led a team at the U-M School of Dentistry that delivered the gene encoding for bone morphogenetic protein-7 (BMP-7) to large bone defects in rats in an attempt to turn on the body’s own bone growth mechanisms. The study showed that animals that got the BMP-7 treatment produced nearly 50 percent more supporting bone around dental implants than those receiving the conventional treatment.


"This study represents a proof-of-concept investigation. We are encouraged about the promise of this treatment," said Giannobile, also an associate professor of biomedical engineering and director of the Michigan Center for Oral Health Research.

More work will need to be done before the approach can be tested in humans, Giannobile added. He said he optimistically would like to see initial trials begin in humans in four to seven years.

BMP-7 is part of a family of proteins that regulates cartilage and bone formation. Recent studies have shown that BMPs are present in tooth development and periodontal repair.

This study mixed BMP-7 genes with an inactivated virus in a gel-like carrier and injected it into wounds. Giannobile said using a virus, with the harmful effects turned off, harnesses the virus’ ability to enter into cells and use their genetic machinery.

Once inside the cell, the viruses help BMP-7 genes get where they need to be in the host’s cells to boost bone production. Gene expression producing BMP-7 proteins peaked after a week. Giannobile said that was ideal because the team did not want to make any permanent genetic changes. The gene acted quickly to get bone growth started, then disappeared within about 28 days.

Giannobile said a next step in this process could include looking for non-viral approaches to delivering gene therapy to the defect site. Alternatively, scientists could conduct the gene therapy outside the body using a tissue biopsy and then transplant the genetically-modified cells back into the patient, but this would require two surgical procedures instead of one.

The Molecular Therapy paper is titled "BMP Gene Delivery for Alveolar Bone Engineering at Dental Implant Defects," and the work was supported by the National Institutes of Health and National Institute of Dental and Craniofacial Research.

Giannobile is part of a cross-campus program called Tissue Engineering at Michigan, funded in part by the National Institute for Dental and Craniofacial Research. TEAM aims to provide an interdisciplinary, research-intensive environment for those pursuing careers in the oral sciences, with a focus in the area of restoration of oral-craniofacial tissues.

Co-authors on the paper include Courtney A. Dunn, adjunct clinical lecturer in orthodontics; Qiming Jin, research associate in periodontics, prevention and geriatrics; Mario Taba Jr., research fellow in periodontics, prevention and geriatrics; Renny T. Franceschi, associate dean for research and professor of periodontics, prevention and geriatrics, all at the U-M School of Dentistry. Francesci also is a professor of biological chemistry. R. Bruce Rutherford, a former U-M Dentistry professor who now serves as chief scientific officer of private tissue engineering firm Ivoclar Vivadent-Dentigenix, was a co-author, as well.

Colleen Newvine | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Novel 3-D printing technique yields high-performance composites

16.01.2018 | Materials Sciences

New application for acoustics helps estimate marine life populations

16.01.2018 | Life Sciences

Fast-tracking T cell therapies with immune-mimicking biomaterials

16.01.2018 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>