Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy promising for growing tooth-supporting bone

03.02.2005


A University of Michigan research team has found that introducing a growth factor protein into a mouth wound using gene therapy helped generate bone around dental implants, according to a new paper in the February issue of the journal Molecular Therapy.



In a patient with a sizeable mouth wound, replacing a tooth takes more than simply implanting a new one---the patient also needs the bone structure to anchor the new tooth in place. Such reconstructive surgery today involves either taking a bone graft from the patient’s chin or jaw, which leaves a second wound needing to heal, or using donated bone from a tissue bank, which yields unpredictable results.

William Giannobile, professor of periodontics, prevention and geriatrics, led a team at the U-M School of Dentistry that delivered the gene encoding for bone morphogenetic protein-7 (BMP-7) to large bone defects in rats in an attempt to turn on the body’s own bone growth mechanisms. The study showed that animals that got the BMP-7 treatment produced nearly 50 percent more supporting bone around dental implants than those receiving the conventional treatment.


"This study represents a proof-of-concept investigation. We are encouraged about the promise of this treatment," said Giannobile, also an associate professor of biomedical engineering and director of the Michigan Center for Oral Health Research.

More work will need to be done before the approach can be tested in humans, Giannobile added. He said he optimistically would like to see initial trials begin in humans in four to seven years.

BMP-7 is part of a family of proteins that regulates cartilage and bone formation. Recent studies have shown that BMPs are present in tooth development and periodontal repair.

This study mixed BMP-7 genes with an inactivated virus in a gel-like carrier and injected it into wounds. Giannobile said using a virus, with the harmful effects turned off, harnesses the virus’ ability to enter into cells and use their genetic machinery.

Once inside the cell, the viruses help BMP-7 genes get where they need to be in the host’s cells to boost bone production. Gene expression producing BMP-7 proteins peaked after a week. Giannobile said that was ideal because the team did not want to make any permanent genetic changes. The gene acted quickly to get bone growth started, then disappeared within about 28 days.

Giannobile said a next step in this process could include looking for non-viral approaches to delivering gene therapy to the defect site. Alternatively, scientists could conduct the gene therapy outside the body using a tissue biopsy and then transplant the genetically-modified cells back into the patient, but this would require two surgical procedures instead of one.

The Molecular Therapy paper is titled "BMP Gene Delivery for Alveolar Bone Engineering at Dental Implant Defects," and the work was supported by the National Institutes of Health and National Institute of Dental and Craniofacial Research.

Giannobile is part of a cross-campus program called Tissue Engineering at Michigan, funded in part by the National Institute for Dental and Craniofacial Research. TEAM aims to provide an interdisciplinary, research-intensive environment for those pursuing careers in the oral sciences, with a focus in the area of restoration of oral-craniofacial tissues.

Co-authors on the paper include Courtney A. Dunn, adjunct clinical lecturer in orthodontics; Qiming Jin, research associate in periodontics, prevention and geriatrics; Mario Taba Jr., research fellow in periodontics, prevention and geriatrics; Renny T. Franceschi, associate dean for research and professor of periodontics, prevention and geriatrics, all at the U-M School of Dentistry. Francesci also is a professor of biological chemistry. R. Bruce Rutherford, a former U-M Dentistry professor who now serves as chief scientific officer of private tissue engineering firm Ivoclar Vivadent-Dentigenix, was a co-author, as well.

Colleen Newvine | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Shrews shrink in winter and regrow in spring
24.10.2017 | Max-Planck-Institut für Ornithologie

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Shrews shrink in winter and regrow in spring

24.10.2017 | Life Sciences

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>