Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rush physicians using gene therapy for heart patients with moderate to severe chest pains


Rush is Only Chicago Medical Center Among 20 U.S. Sites in Clinical Study

Individuals with moderate to severe chest pains (angina) who have not found relief from medication may benefit from a new gene therapy approach being used by cardiologists at Rush University Medical Center to grow new blood vessels in the heart.

The phase II clinical research study uses vascular endothelial growth factor-2 (VEGF-2) in the form of a solution containing a DNA plasmid that is delivered using catheterization to heart tissue that has been damaged from insufficient blood flow.

Once the catheter reaches the targeted site inside of the heart, the VEGF-2 is injected into the heart muscle region with inadequate blood supply. The DNA plasmid is then taken up by the middle muscular layer of the heart wall near the injection site. Inside the cell, the DNA encoded VEGF-2 expresses itself which in turn stimulates the growth of new blood vessels by promoting the proliferation of endothelial cells in the heart.

New blood vessels are required to provide oxygen-carrying blood to heart muscles to compensate for the blocked heart arteries. The subsequent, improved blood flow relieves the painful symptoms of angina.

"The process of growing new blood vessels, or angiogenesis, should occur over the course of four to eight weeks following the procedure which is done in the cardiac catheterization lab at Rush," said Dr. Gary L. Schaer, the principal investigator of the trial at Rush and director of the Rush Cardiac Catheterization Labs. "The patient goes home the next day." Several patients have received the gene therapy and all are doing well.

Individuals who may be candidates for this gene therapy study trial must have moderate to severe angina, but cannot also be candidates for treatment using angioplasty or bypass surgery. Angioplasty involves a catheterization with a balloon-like device that opens blocked arteries, while bypass surgery requires open-heart surgery to place veins removed from the patient’s leg or arteries taken from the patient’s chest wall or arm to "bypass" the blocked blood vessels.

While both of these treatments have been shown to be successful in relieving severe chest pains resulting from blocked arteries, a significant percentage of patients eventually do not respond well to either treatment, often requiring another angioplasty or bypass operation, noted Schaer. "If gene therapy proves to be safe and effective, it will represent an important new approach to improve the quality of life in these seriously ill patients with refractory chest pain," said Dr. R. Jeffrey Snell, study co-investigator and Schaer’s colleague at Rush.

In the new study, patients will be randomly assigned to receive the gene administered through a cardiac catheter threaded into the heart from a leg artery or a placebo delivered using the same method. As required by the U.S. Food and Drug Administration, the study is "double blinded," which means that neither the doctor nor the patient will know whether he or she is receiving the gene therapy or a placebo. For every three patients that receive the active gene, one will receive a placebo. Following treatment, patients enrolled in the study will be examined for chest pain at one month, three months and six months. A total of 404 patients will be enrolled in the study at the 20 study sites across the country.

The Genetic Angiogenic Stimulation Investigational Study (GENASIS) is funded by Corautus Genetics.

More than 11 million people in the United States suffer from coronary artery disease. Many patients receive medications to increase blood flow but nearly 500,000 angioplasties and coronary bypass procedures are performed each year in those patients who do not benefit from medication.

John Pontarelli | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>